
Rotograph EVO 3D CE 0051

User's Manual

Version 16 March 2018 (Rev. 2)

Revision history Manual code 6907914103

Rev.	Date	Page/s	Modification description
0	29.04.16	-	Document approval.
1	20.09.17	31, from 53 to 62, 70, 97, 118, from 120 to 122, 166, 203, 204	Release of QC tool software for quality control test. Release of eXtra Definition modality in 3D Partial Volume exams. (Ref. RDM 8480, RDM 8607)
2	16.03.18	53	QC tool software path changed. (Ref. RDM 8742)

USER'S MANUAL
Revision history

THIS PAGE IS INTENTIONALLY LEFT BLANK

Contents

1. INTRODUCTION	1
1.1 Description of the system	2
1.2 Physical principles of operation	3
1.3 Acquisition of 3D or volumetric images	3
1.4 Panoramic and cephalometric acquisitions	4
1.5 Digital sensors	4
1.6 Icons appearing in the manual	4
2. USABILITY	5
2.1 Training	5
2.2 Patient profile	5
3. SAFETY INFORMATION	6
3.1 Warnings	7
3.1.1 Distribution of stray radiation in Panoramic examination	10
3.1.2 Distribution of stray radiation in volumetric examination	11
3.1.3 Distribution of stray radiation in Ceph examination	12
3.1.4 Electromagnetic emissions	14
3.1.5 Electromagnetic immunity	15
3.1.6 Recommended separation distances for non-life supporting equipment	17
3.2 Environmental risks and disposal	18
3.3 Symbols used	19
4. CLEANING AND DISINFECTION	20
4.1 Cleaning materials compatible with Rotograph EVO 3D	20
5. DESCRIPTION	21
5.1 Identification plates and laser labels	21
5.1.1 Identification plates and laser labels "220-240V" version	22
5.1.2 Identification plates and laser labels "110-120V" version	23
5.2 Functions, models and versions	24
5.2.1 Basic version	24
5.2.2 Version with cephalometric device	25
5.2.3 EVO XP function (Additional projection package) - Optional	26
6. TECHNICAL CHARACTERISTICS	27
6.1 Dose per Area Product (DAP) in 3D examinations	33
6.2 Dimensions	34
6.3 Loading curve of the tube and cooling curve of the anode	36
6.4 Separate parts supplied with Rotograph EVO 3D	38
6.5 Applied safety regulations	40

6.6	Note on constant magnification for Panoramic and TMJ (mouth open/closed) examinations	41
6.7	Measurement method of technical factors (paragraph for authorised personnel)	42
6.8	Verification method of technical factors (paragraph for authorised personnel)	43
6.9	Open Source Software.....	46
6.10	CBCT Conditions of Operation	47
6.10.1	Reference plane.....	47
6.11	CTDI information.....	48
6.11.1	Measure conditions.....	49
6.11.2	Measurement procedure.....	49
6.11.3	Measured values	50
6.11.4	Dose values for other conditions of operation	51
6.11.5	Dose profile.....	52
6.12	QC Program	53
6.12.1	Schedule.....	54
6.12.2	3D test image acquisition	55
6.12.3	Nyquist frequency	57
6.12.4	Contrast to noise ratio.....	57
6.12.5	Spatial resolution.....	58
6.12.6	CT number	58
6.12.7	Lenght and width measures	59
6.12.8	Slice thickness.....	59
6.12.9	Homogeneity	60
6.12.10	Dose at the isocenter.....	60
6.12.11	Acceptance index	61
6.12.12	QC log book	62
7.	USE OF THE TEMPLE CLAMP CENTRING DEVICE	63
8.	GENERAL INSTRUCTIONS FOR USE	65
8.1	Control panel - description and functions	65
8.1.1	Key function description.....	70
8.2	Digital sensors	71
8.2.1	Switching on the device.....	72
8.3	Positioning of chin support	74
8.4	General notes on the acquisition of images	76
8.5	Panoramic examination	77
8.5.1	Preparation of the device	78
8.5.2	Anatomic / Manual Exposure.....	82
8.5.2.1	Anatomic exposure	83
8.5.2.2	Manual exposure	84
8.5.3	Preparation of the patient.....	85
8.5.4	Making an exposure.....	88

8.6	Temporo-Mandibular Joint Examination	92
8.6.1	Device preparation	94
8.6.2	Anatomic / Manual Exposure	96
8.6.2.1	Anatomic exposure	97
8.6.2.2	Manual exposure	98
8.6.3	TMJ closed mouth	99
8.6.3.1	Preparation of the patient	99
8.6.3.2	Carrying out the first exposure (mouth closed)	101
8.6.4	TMJ open mouth	103
8.6.4.1	Preparation of the patient	103
8.6.4.2	Carrying out the second exposure (mouth open)	105
8.7	SINUS examination	108
8.7.1	Anatomic / Manual Exposure	109
8.7.1.1	Anatomic exposure	110
8.7.1.2	Manual exposure	111
8.7.2	Preparation of the patient	112
8.7.3	Making an exposure	114
8.8	Volumetric or 3D exams	117
8.9	3D Dentition exam	118
8.9.1	Preparation of the device	119
8.9.2	Anatomic / Manual Exposure	121
8.9.2.1	Anatomic exposure	122
8.9.2.2	Manual exposure	123
8.9.3	Preparation of the patient	124
8.9.4	Making an exposure	127
8.10	Left TMJ in 3D mode	130
8.10.1	Preparation of the device	131
8.10.2	Anatomic / Manual Exposure	132
8.10.2.1	Anatomic exposure	133
8.10.2.2	Manual exposure	134
8.10.3	Preparation of the patient	135
8.10.4	Making an exposure	137
8.11	Right TMJ in 3D mode	140
8.11.1	Preparation of the device	141
8.11.2	Anatomic / Manual Exposure	142
8.11.2.1	Anatomic exposure	143
8.11.2.2	Manual exposure	144
8.11.2.3	Preparation of the patient	145
8.11.3	Making an exposure	147
8.12	SINUS in 3D mode	150
8.12.1	Preparation of the device	151
8.12.2	Anatomic / Manual Exposure	152
8.12.2.1	Anatomic exposure	153
8.12.2.2	Manual exposure	154
8.12.3	Preparation of the patient	155
8.12.4	Making an exposure	158

8.17 Analysis of the problems on the standard panoramic examinations	189
8.17.1 Proper positioning of the patient	190
8.17.1.1 Errors due to poor positioning of patient.....	192
8.17.1.2 Images with artefacts	199
8.18 Storing of automatic exposure parameters.....	202
8.18.1 Table of pre-set anatomic parameters	203
9. MAINTENANCE	205

No part of this publication can be reproduced, transmitted, transcribed or translated without the approval of VILLA SISTEMI MEDICALI S.p.A.

This manual in English is the original Manual version.

USER'S MANUAL
Contents

THIS PAGE IS INTENTIONALLY LEFT BLANK

1. INTRODUCTION

NOTE:

The present manual is updated for the product it is sold with, in order to guarantee an adequate reference to use the product properly and safely. The manual may not reflect changes to the product that do not affect operating modes or safety.

The aim of this publication is to instruct the user on the safe and effective use of the device.

This manual is limited to the description of the radiographic equipment; the instructions for the image acquisition, manipulation and processing Digital Acquisition System software are given in the manuals supplied with the Digital Sensor.

WARNING:

1. Rotograph EVO 3D is an electro-medical device and it can be used only under the supervision of a physician or of highly qualified personnel, with the necessary knowledge on X-ray protection.
2. The device must be used in compliance with the procedures described, and never be used for purposes different from those herewith indicated.
3. Please read this manual thoroughly before starting to use the unit; it is advisable to keep the manual near the device, for reference while operating.
4. The user is liable as concerns the legal fulfilment related to the installation and the operation of the device.

1.1 Description of the system

The evolution of panoramic X-ray provides, in addition to traditional methods of examination (Panoramic, TMJ, Sinus, etc.). the use of three-dimensional images of the patient's maxillofacial complex, so as to allow the doctor the targeted selection of the procedures to use, both during the planning phase of the treatment as well as diagnosis aid.

Rotograph EVO 3D, produced by VILLA SISTEMI MEDICALI S.p.A., is a complete panoramic system that allows the execution of all X-rays commonly used in dentistry and orthodontics (excluding intraoral radiographs) and also allows the acquisition of volumetric tomographic or 3D X-rays.

In this type of device, the linear digital sensor traditionally used in the digital panoramic X-rays has been replaced by a wide range Digital Sensor, also known as the Flat Panel.

These sensors allow to capture an area of the maxillofacial complex that include the most important anatomical details, by acquiring a series of two-dimensional images (imaging).

The following options are available that must be ordered separately:

- EVO XP (Additional projection package); allows to perform the following examinations: Emi-panoramic, Improved orthogonality dentition, reduced dose Panoramic, Frontal dentition and Bitewing.
- DIGITAL CEPH; allows the execution of the following exams, available in High Resolution mode or Normal Resolution (high speed):
 - CEPH exam in different formats
 - CARPUS exam.

1.2 Physical principles of operation

In general the Flat Panel sensor functions as a normal digital sensor, that converts the amount of dose that affects every single sensor element (pixel) into an electrical signal that can be processed through an analogue-digital conversion system. Unlike traditional sensors used for panoramic exams that normally return one column image at a time, the Flat Panel returns the entire contents of the sensor. Special functions inside the sensor also allow the acquisition of a specific part of the sensor.

The system must be connected to a dedicated PC, on which are installed all the software needed for image acquisition, processing and display. The resulting images are stored in the system's database in correspondence with the selected patient.

1.3 Acquisition of 3D or volumetric images

In 3D acquisitions a sequence of two-dimensional images is acquired during a rotation of the rotating arm.

In this type of acquisition, the X-ray generator is operated in pulsed mode, with short pulses emitted at each degree of the rotating arm. The sequence of images thus obtained is passed to a special software residing on the dedicated PC, which uses sophisticated mathematical algorithms to generate the volume concerning the emission.

The spatial resolution of the image obtained is the result of both the size of the sensor's pixels and the quality of the reconstruction software, in this case the resolution is measured in "voxel" (short for VOlume piXEL). The volume thus reconstructed is returned to the image display software, in which different operations are possible that allow the operator or the physician to select which part of the volume to display, to obtain specific sections at a given point, etc.

1.4 Panoramic and cephalometric acquisitions

Special functions of the Flat Panel also allow to acquire partial sensor images with a frame rate (acquisition speed) higher than that used for 3D images.

In this mode, the X-ray emission is continuous, as in normal panoramic radiography. The sequence of images obtained form the input to a special reconstruction software, developed specifically for the Rotograph EVO 3D, which allows the reconstruction of the standard panoramic X-ray simulating the physical mechanism of "cancelation" as used in analogue systems.

1.5 Digital sensors

The unit uses the wide range digital system, used for 3D and Panoramic type images.

The cephalometric images are obtained using a linear CCD sensor.

The use of the equipment includes a dedicated Personal Computer (PC), on which image acquisition, management and processing programs are installed.

1.6 Icons appearing in the manual

Indicates a "NOTE": please read the items marked by this icon thoroughly.

This icon indicates a WARNING: the items marked by this icon refer to the safety aspects of the patient and/or the operator.

2. **USABILITY**

The Medical System Rotograph EVO 3D is intended to be used in radiology or dental practices.

In the first case the user is either the radiologist or Technician specialised in Radiology and in the dentist in the latter case. The radiologist or the dentist is responsible for the assessment of the risk/benefit ratio.

In both cases, these are people who already have basic knowledge about:

- emission of ionising radiation
- danger of physical harm related to the excessive use of ionising radiation
- methods to reduce the risk of excessive radiation to the patient (use of lead-lined protections, etc.).

The operator must be familiar in the use of a Personal Computer (PC) and related programs, in order to use the functions on the PC easily.

2.1 **Training**

The operator training follows at the end of the system's installation both concerning the use of the system and the image acquisition and display programs.

The training does not require the use of special tools.

This manual describes the steps necessary to perform volumetric X-rays (or 3D) or standard panoramic type X-rays.

2.2 **Patient profile**

The machine is suitable for all types of patient.

Depending on the type of patient, the different execution modes of each examination can be selected on the operating console (adult, baby - small, medium or large - type of dentition).

3. SAFETY INFORMATION

WARNING:

Please read this chapter thoroughly.

VILLA SISTEMI MEDICALI designs and builds its devices in compliance with the safety requirements; furthermore it supplies all information necessary for correct use, and the warnings related to danger associated with X-ray generating units.

Villa Sistemi Medicali cannot be held responsible for:

- the use of Rotograph EVO 3D different from the intended use
- damage to the unit, the operator or the patient, caused both by installation and maintenance procedures different from those described in this manual and in the service manual supplied with the unit, and by wrong operations
- mechanical and/or electrical modifications performed during and after the installation, different from those described in the service manual.

Installation and any technical intervention must only be performed by qualified technicians authorised by Villa Sistemi Medicali.

Only authorised personnel can remove the covers and/or have access to the components under tension.

In compliance with the IEC 60601-1 standard, the modification of the equipment or its parts is strictly prohibited.

3.1 **Warnings**

Rotograph EVO 3D must be used in dental surgeries, radiology and hospital settings.

This device has not been designed to be used in environments where vapours, anaesthetic mixtures flammable with air, or oxygen and nitrous oxide, can be detected.

Do not let water, or other liquids, into the device, as this could cause short-circuits and corrosion.

Before cleaning the device, please disconnect it from the line voltage.

Wherever necessary, use the appropriate accessories, such as the leaded aprons, to protect the patient from radiation.

While performing the radiography, no-one, apart from the operator and the patient, must remain in the room.

Rotograph EVO 3D has been built to support a continuous operation at intermittent load; therefore please follow the described use cycles to enable the device to cool down.

Rotograph EVO 3D must be switched off while using devices such as electrosurgical devices or similar apparatus.

Clean and disinfect all parts that come into contact with the patient.

The centring bite or the bite protective sleeve, the head strip for 3D examinations and the ear centring devices of the Cephalostat must be replaced after each examination in which they were used.

Never try to rotate the moving arm manually when the unit is switched on, to avoid permanent damage to the unit.

The manual movement is only allowed in case of error 206 (no power to motors) to allow the exit of the patient.

Although the dose supplied by dental X-ray units is quite low and distributed on a small surface, the operator must adopt the precautions and/or suitable protection for the patient and himself, during the execution of radiography. It is advisable to control the X-ray emission from a protected area, by means of a remote control. If it is necessary to operate near the patient, stay as far as the remote control cable allows, or at least 2 m both from the X-ray source and from the patient, as shown in Figure 1 and Figure 2.

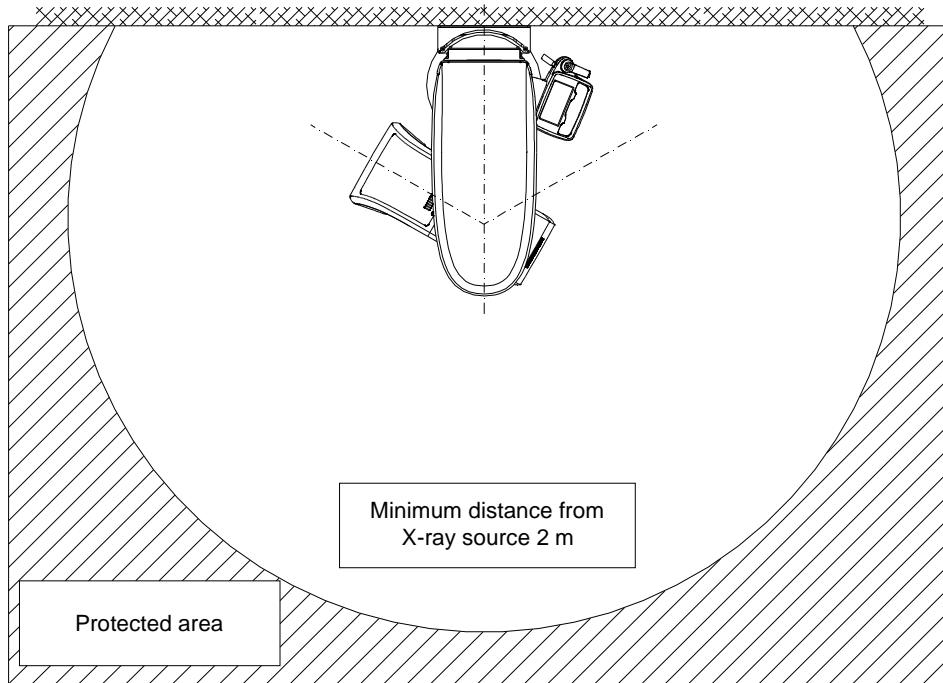


Figure 1 - Panoramic version

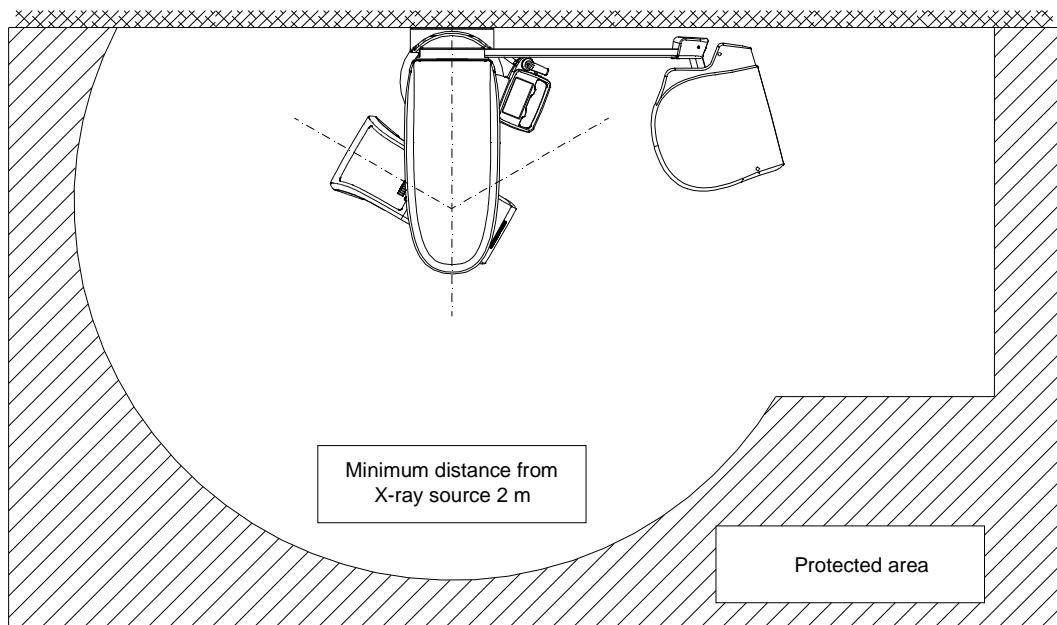


Figure 2 - Cephalometric version

WARNING:

The network connector on the base of the Rotograph EVO 3D column must be connected to the dedicated image acquisition and 3D and panoramic reconstruction PC via a shielded Ethernet cable "Cat.5e" or greater.

Do not use this connector to connect the Rotograph EVO 3D to LAN networks.

NOTE:

The dimension of the "patient's environment" is defined as a distance of at least 1.5 m from the actual patient.

If the PC is positioned inside the patient's environment, it must conform to the requirements specified by the IEC 60601-1 standard for medical devices; if located outside of the patient's environment, it must be compliant with the IEC 60950 standard.

If the PC is supplied by Villa (optional), it must be placed outside the patient's environment.

NOTE:

Do not apply movements to the rotating arm or the tube-head when the equipment is on.

WARNING: PRECAUTIONS WHILE USING LASER CENTRING DEVICES:

Although the laser centring devices used on the Rotograph EVO 3D system are classified in Class 1 in compliance with the IEC 60825-1:1993 standard and attachments, the following precautions are recommended:

- Always keep the room well lit.
- Do not look into the output windows of laser centring units.
- Do not stare at the reflections of laser pointers.
- Instruct the patient to keep his/her eyes closed as long as the laser pointers are active.
- Before starting an examination, the patient must remove earrings, glasses, necklaces and whatever else could reflect the laser beam or be impressed on the radiographic image.
- Do not clean the openings of laser centring devices with tools that could modify the optics. Any cleaning must be performed only by authorised technicians.

Operations other than those indicated could cause the ejection of dangerous non-ionising radiation.

3.1.1 Distribution of stray radiation in Panoramic examination

	-1.5	-1	-0.5	0	0.5	1	1.5m	
	0,000198	0,000253	0,000451	0,000379	0,00036	0,000282	0,000171	
1.5 m	0,000228						0,000168	1.5 m
1	0,000464						0,000211	1
0.5	0,000567						0,00024	0.5
0	0,000417						0,000139	0
-0.5	0,000404						0,000227	-0.5
-1	0,00032						0,000211	-1
-1.5	0,000213	0,000383	0,000558	0,000501	0,000381	0,000155	0,000369	-1.5
		0,00027					0,000194	
	-1.5	-1	-0.5	0	0.5	1	1.5m	

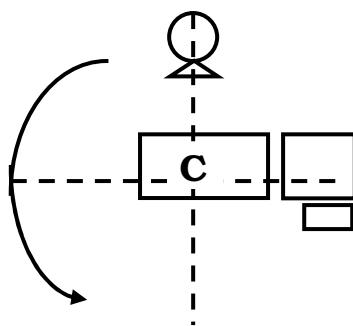


Figure 3: Distribution of stray radiation in Panoramic examination

The Figure above illustrates the distribution of stray radiation in the horizontal plane at the centre of rotation of the scanning unit in the area of a 3 x 3 m rectangle.

The measurement was performed using as scattering element an anthropomorphic phantom complete of soft tissues simulating the head of the typical patient (in size, dimensions and tissues) of the intended use of the machine.

This phantom was placed in the same position as a patient taking a panoramic exam. C is the center of patient head.

The measures were taken during a panoramic exam setting the following parameters: 86kV, 10mA, 14.4s.

NOTE:

They are the maximum kV and mA that can be set on the equipment.

The distribution values in the table are expressed as air Kerma for mAs ($\mu\text{Gy}/\text{mAs}$).

3.1.2 Distribution of stray radiation in volumetric examination

	-1.5	-1	-0.5	0	0.5	1	1.5m	
1.5m	0.02	0.02	0.03	0.03	0.03	0.03	0.02	1.5m
1	0.025						0.03	1
0.5	0.03						0.02	0.5
0	0.03						0.004	0
-0.5	0.03						0.01	-0.5
-1	0.03						0.02	-1
-1.5	0.02	0.03	0.03	0.04	0.03	0.025	0.02	-1.5
	-1.5	-1	-0.5	0	0.5	1	1.5m	

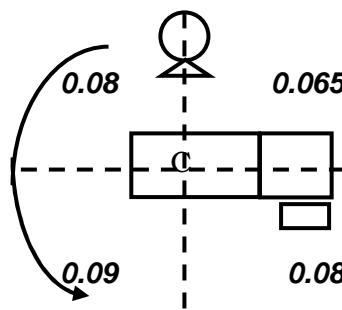


Figure 4: Distribution of stray radiation in volumetric examination

The Figure above illustrates the distribution of stray radiation in the horizontal plane at the centre of rotation of the scanning unit in the area of a 3 x 3 m rectangle.

The measurement was performed using a cylindrical phantom with a diameter of 320 mm and length of 140 mm placed in the centre of rotation of the scanning unit, with the "3D Dentition" examination mode and the following parameters set: 86kV, 10mA, 8s.

NOTE:

They are the maximum kV and mA that can be set on the equipment.

The distribution values in the table are expressed as air Kerma for mAs ($\mu\text{Gy}/\text{mAs}$).

3.1.3 Distribution of stray radiation in Ceph examination

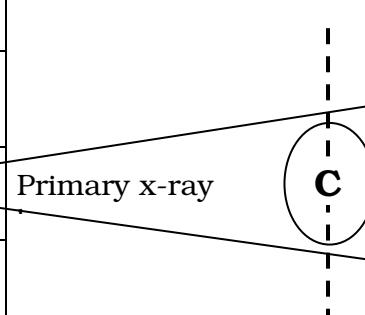

	-1.5	-1	-0.5	0	0.5	1	1.5m	
1.5 m	0.00031	0.00034	0.00038	0.00036	0.00028	0.0006	0.00093	1.5m
1₍₁₎	0.00012						0.00155	1
0.5₍₁₎	0.00023						0.0022	0.5
							0.0008	0
-0.5₍₁₎	0.00022						0.0003	-0.5
-1₍₁₎	0.00012						0.00021	-1
-1.5	0.00029	0.00032	0.00034	0.00033	0.00019	0.00015	0.00012	-1.5
	-1.5	-1	-0.5	0	0.5	1	1.5m	

Figure 5: Distribution of stray radiation in Ceph examination

NOTE (1):

The doses reported on the source side (S) are just the head scattering term and these values does not take into account of tubehead leakage radiation.

The Figure above illustrates the distribution of scatter radiation in the horizontal plane at the centre of rotation of the scanning unit in the area of a 3 x 3m rectangle.

The measurement was performed using as scattering element an anthropomorphic phantom complete of soft tissues simulating the head of the typical patient (in size, dimensions and tissues) of the intended use of the machine.

This phantom was placed in the same position as a patient taking a 30x22 cephalometric exam; this exam is the maximum in size among those the user can select.

C is the center of patient head; S is the X-ray source and the primary X-ray beam is also represented in Figure above.

The measures were taken during a cephalometric exam setting the following parameters: 86kV, 12mA, 7.5s.

NOTE:

They are the maximum kV and mA that can be set on the equipment.

The distribution values in the table are expressed as air Kerma for mAs ($\mu\text{Gy}/\text{mAs}$).

3.1.4 Electromagnetic emissions

In accordance with the IEC 60601-1-2 standard, the Rotograph EVO 3D is suitable for use in the specified electromagnetic environment.

The purchaser or user of the system should assure that it is used in an electromagnetic environment as described below.

Emissions test	Compliance	Electromagnetic environment
CISPR 11	Group I	Rotograph EVO 3D uses RF energy only for its the internal function. Therefore, the R.F. emissions is very low and not likely to cause any interference in nearby electronic equipment.
	Class B+12	Rotograph EVO 3D is suitable for use in domestic establishments and in establishments directly connected to the low voltage power supply network which supplies buildings used for domestic purposes.
Harmonics emissions IEC 61000-3-2	Class A	Rotograph EVO 3D is suitable for use in domestic establishments and in establishments directly connected to the low voltage power supply network which supplies buildings used for domestic purposes.
Voltage fluctuations/ flicker emissions IEC 61000-3-3	Complies	Rotograph EVO 3D is suitable for use in domestic establishments and in establishments directly connected to the low voltage power supply network which supplies buildings used for domestic purposes.

3.1.5 Electromagnetic immunity

In accordance with the IEC 60601-1-2 standard, the Rotograph EVO 3D is suitable for use in the specified electromagnetic environment.

The purchaser or user of the system should assure that it is used in an electromagnetic environment as described below.

Immunity test	IEC 60601-1-2 Test level	Compliance level	Electromagnetic environment
Electrostatic discharges (ESD) IEC 61000-4-2	6 kV contact 8 kV air	Test level IEC 60601-1-2	Residential/Hospital
Electrical fast transient/burst IEC 61000-4-4	2 kV for power supply lines 1 kV for input/output lines > 3 m	Test level IEC 60601-1-2	Residential/Hospital
Surge IEC 61000-4-5	1 kV differential mode 2 kV common mode	Test level IEC 60601-1-2	Residential/Hospital
Voltage dips, short interruptions and voltage variations on power supply input lines IEC 61000-4-11	0 % U_n for 0.5 cycles 40 % U_n for 5 cycles 70 % U_n for 25 cycles 0 % U_n for 5 s	Test level IEC 60601-1-2	Residential/Hospital
Power frequency (50/60 Hz) magnetic field IEC 61000-4-8	3 A/m	Test level IEC 60601-1-2	Residential/Hospital

Immunity test	IEC 60601-1-2 Test level	Compliance level	Electromagnetic environment
			<p>Portable and mobile RF communications equipment should be used no closer to any part of the Rotograph EVO 3D, including cables, than the recommended separation distance calculated from the equation applicable to the frequency of the transmitter.</p> <p>Recommended separation distance:</p>
Radiated RF IEC 61000-4-3	3 V/m 80 MHz to 2.5 GHz	3 V/m	$d = 1.2 \times \sqrt{P}$ 80 MHz to 800 MHz $d = 2.3 \times \sqrt{P}$ 800 MHz to 2.5 GHz

Immunity test	IEC 60601-1-2 Test level	Compliance level	Electromagnetic environment
Conducted RF IEC 61000-4-6	3 V 50 kHz to 80 MHz	3 V	$d = 1.2 \times \sqrt{P}$
			<p>Where "P" is the maximum output rating of the transmitter in watts (W) according to the transmitter manufacturer and "d" is the recommended separation distance in meters (m).</p> <p>Field strength for fixed RF transmitters, as determined by an electromagnetic site survey, should be less than the compliance level in each frequency range.</p> <p>Interference may occur in the vicinity of the equipment marked with the following symbol:</p>

3.1.6 Recommended separation distances for non-life supporting equipment

Rotograph EVO 3D is intended for use in an electromagnetic environment in which radiated RF disturbances are controlled.

The customer or the user of the system can help prevent electromagnetic interference by maintaining a minimum distance between portable and mobile RF communications equipment (transmitters) and the Rotograph EVO 3D as recommended below, according to the maximum output power of the communications equipment.

Rated maximum output power of the transmitter (W)	Separation distance according to frequency of transmitter (m)		
	150kHz to 80MHz $d = 1.2 \times \sqrt{P}$	80MHz to 800MHz $d = 1.2 \times \sqrt{P}$	800MHz to 2.5GHz $d = 2.3 \times \sqrt{P}$
0.01	0.12	0.12	0.23
0.1	0.38	0.38	0.73
1	1.2	1.2	2.3
10	3.8	3.8	7.3
100	12	12	23

For transmitters rated at the maximum output power not listed above, the recommended separation distance "d" in meters (m), can be estimated using the equation applicable to the frequency of the transmitter, where "P" is the maximum output power rating of the transmitter in watts (W) according to the transmitter manufacturer.

NOTE:

At 80 MHz and 800 MHz, the separation distance for the higher frequency range applies.

NOTE:

These guidelines may not apply in all situations. Electromagnetic propagation is affected by absorption and reflection of structures, objects and people.

3.2 Environmental risks and disposal

In some of its parts, the device contains materials and liquids that, at the end of the lifespan of the unit, must be disposed of at the appropriate disposal centres.

In particular, the device contains the following materials and/or components:

- **Tube-head:** dielectric oil, lead, copper, iron, aluminium, glass, tungsten.
- **Control Panel:** iron, copper, aluminium, glass-resin, non-biodegradable plastic material packaging.
- **Column, rotating arm and extensions:** iron, lead, aluminium, copper, glass-resin, and non-biodegradable plastic material.
- **Applied parts:** non-biodegradable plastics, iron, aluminium.
- **Digital sensor:** iron, lead, copper, integrated electronic components.

Information for users of the European Community according to 2011/65/EU Directive on the restriction of the use of certain hazardous substances in electrical and electronic equipment

The symbol with the waste bin crossed on the equipment or its packaging, indicates that the product must be separately collected from other waste at the end of its life.

The separate collection of the present equipment that has reached the end of its life is organised and managed by the manufacturer. The user who wishes to dispose of this equipment must contact the manufacturer and follow their system to enable the separate collection of the equipment at the end of its life.

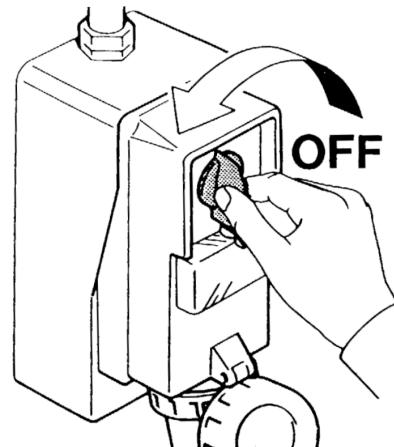
Suitable separate waste collection for the subsequent start of the equipment discarded for recycling, for treatment and for environmentally friendly disposal, contributes in preventing possible adverse effects on the environment and health and promotes the reuse and/or recycling of materials of which the equipment is comprised.

Illegal disposal of the product by the holder implies the application of administrative sanctions provided by law

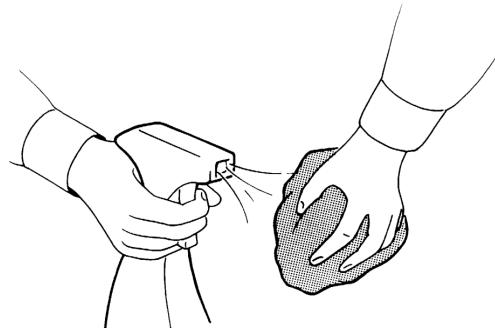
3.3 Symbols used

Apart from the symbols indicated on the control panel, the following icons are also used in this Manual and on the Rotograph EVO 3D itself (see Chapter 7):

Symbol	Description
	Device with type B applied parts
	In some of its parts, the device contains materials and liquids that, at the end of the lifespan of the unit, must be disposed of at the appropriate disposal centres
	Alternating current
	Connection point to the neutral conductor
	Connection point to the line conductor
	Protection earthing
	Operation earthing
	OFF; device not connected to the mains
	ON; device connected to the mains
	Laser
	Laser source output
	Dangerous voltage
	Product identification code
	Serial number
	Date of manufacture (year and month)
	Manufacturer's name and address
	Total filtration
	Tube-head
	X-ray tube
	See the accompanying documentation
	Conformity to the EC 93/42 Directive


4. CLEANING AND DISINFECTION

In order to guarantee a good level of hygiene and cleaning, it is necessary to respect the following procedures.


WARNING:

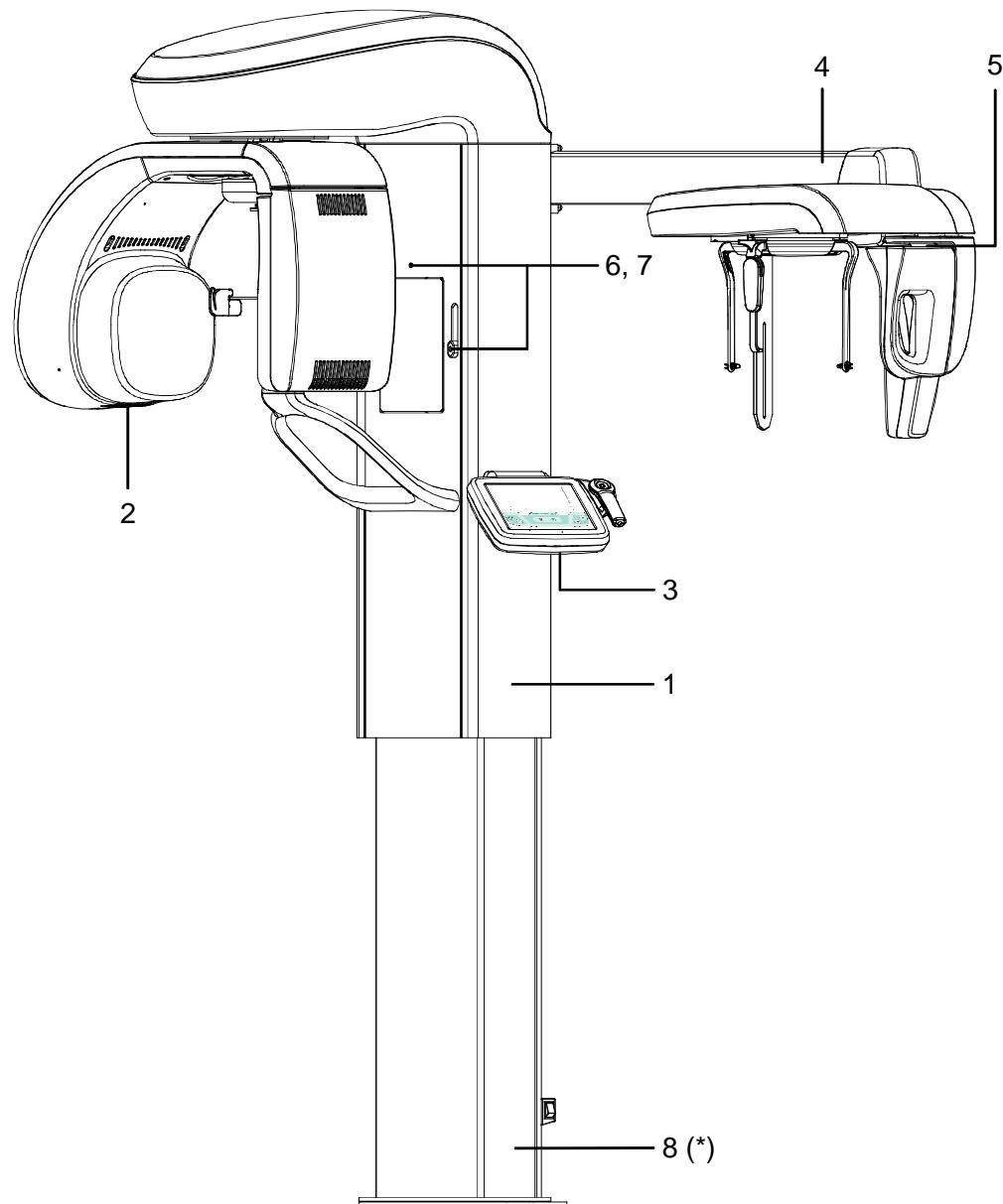
Disconnect the unit from the mains before performing any cleaning.

Do not let water or other liquids enter the unit, as these could cause corrosion or short-circuiting.

Use only a wet cloth and a mild detergent to clean the painted surfaces, the accessories and the connection cables, and then wipe with a dry cloth; do not use corrosive, abrasive solvents (alcohol, benzine, trichloroethylene).

Thoroughly clean the chin support, resting handgrips, nose-rest and temple clamp support any time these are used.

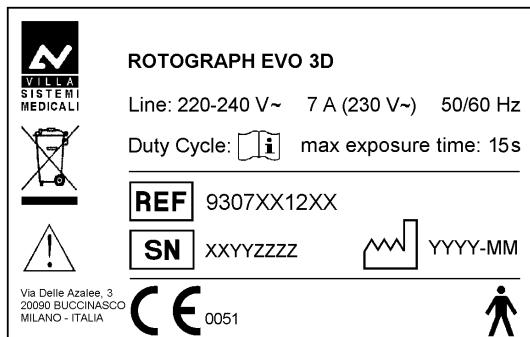
The centring bite or the bite protective sleeve, the head strip for 3D examinations and the ear centring pins of the Cephalostat must be replaced after each examination in which they were used.


4.1 Cleaning materials compatible with Rotograph EVO 3D

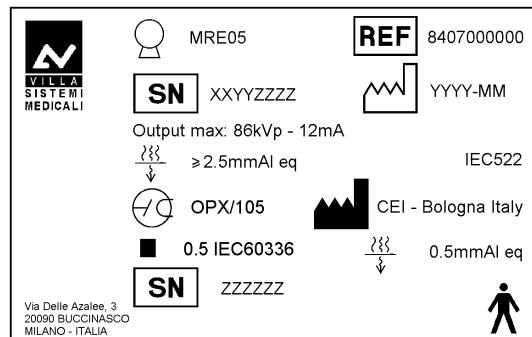
Neutral detergent for painted surfaces, accessories and connection cables.

Solution at 2% glutaraldehyde for chin support, resting handgrips, nose rest and temple clamp support.

5. DESCRIPTION


5.1 Identification plates and laser labels

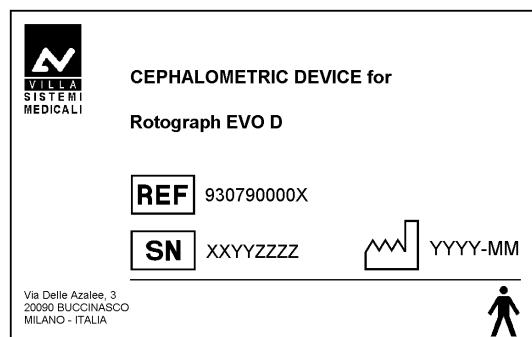
5.1.1 Identification plates and laser labels "220-240V" version


1

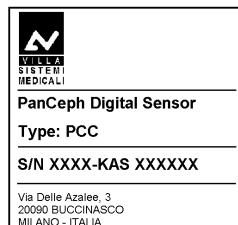
Rotograph EVO 3D data plate

2

Tube-head characteristics plate


3

EVO XP plate
(Additional projection package)


4

CEPHALOMETRIC device plate

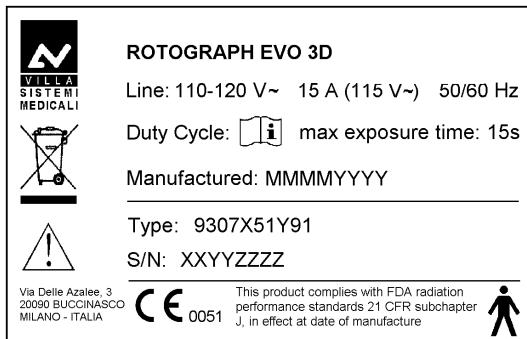
5

PANCEPH digital
sensor data plate

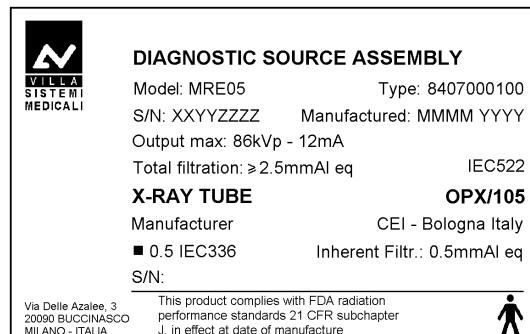
6

(N° 2) Spot Laser
indicator label

7


(N° 2) Laser symbol
label

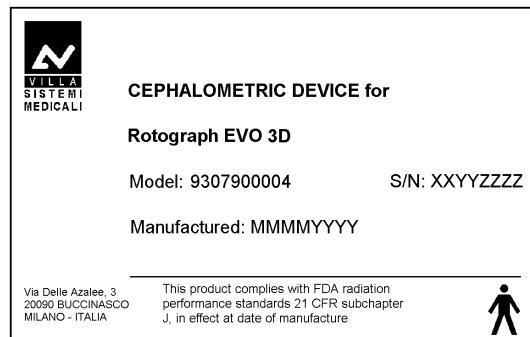
5.1.2 Identification plates and laser labels "110-120V" version


1

Rotograph EVO 3D data plate

2

Tube-head characteristics plate


3

EVO XP plate
(Additional projection package)

4

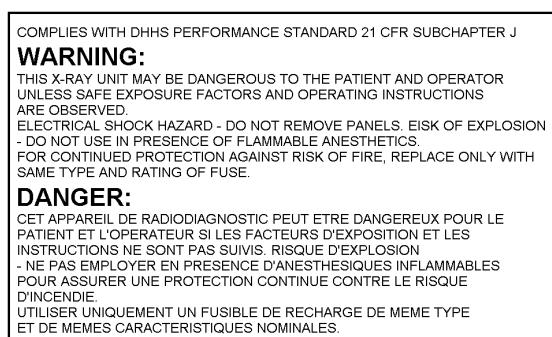
CEPHALOMETRIC device plate

5

PANCEPH digital sensor data plate

6

(N° 2) Spot Laser indicator label


7

(N° 2) Laser symbol label

8

WARNING label

5.2 Functions, models and versions

Rotograph EVO 3D, produced by VILLA SISTEMI MEDICALI S.p.A., is a complete panoramic system, which enables to perform all X-rays commonly necessary in dental field (except for endoral X-rays) and volumetric three-dimensional images.

In some versions, certain examination modes are not available but the device (thanks to its computerised control system) can be expanded and updated with new releases, directly at the Dentist premises.

The basic version performs Panoramic, Sinus and TMJ examinations. Optional functions enable the system to perform the following additional examinations:

- **EVO XP (Additional projection package)**
Allows you to carry out the following additional examinations: Emi-panoramic, Improved orthogonality dentition, reduced dose Panoramic, Frontal dentition and Bitewing.
- **CEPH**
Allows you to carry out the following examinations:
 - CEPH exam in different formats
 - CARPUS exam.

5.2.1 Basic version

The base version enables to perform the following examinations:

- Panoramic Adult or Child, with 3 Sizes and 3 Types of Biting for a total of 18 combinations in Automatic selection; in manual selection it is possible to select high voltage between 60kV and 86kV, in 2kV steps and anodic current from 6 mA to 10 mA in 1 mA steps.
- Sinus enables to perform images of the paranasal sinuses with front projection (postero/anterior).
- TMJ mouth closed/open in lateral projection.
- 3D volumetric examinations of the Dentition, TMJ Left, TMJ Right and Sinus.
- 3D volumetric examinations of Dentition with Partial Volumes to perform exposition only on mandibular or maxillary region when the patient is known to have a problem only on one part of the dentition in order to reduce the dose.

5.2.2 Version with cephalometric device

The version with cephalometric device allows you to perform the following examinations:

- Panoramic, Sinus and TMJ, Adult and Child, with the same characteristics described for the base version.
- 3D volumetric examinations with the characteristics described for the standard version.
- Digital Cephalometry with a choice between Adult and Child with 3 sizes each. The execution of the high resolution or standard resolution can be selected within each combination, for a total of 12 combinations in Automatic selection. When examining at a Normal Resolution, the examination is conducted with a reduced scan time, allowing a further reduction of dose. In manual selection it is possible to select high voltage between 60kV and 86kV, in 2kV steps and anodic current from 6 mA to 12 mA in 1 mA steps. The positioning of the primary slide collimator, the secondary collimator and the Digital Sensor (in its sensor holder) is automatic, depending on the size/projection selected. The Soft Tissues Filter is powered to attain the best possible result of the facial profile.
- Children only Carpus exam with 3 selectable sizes, for a total of 3 combinations of exam in automatic. In manual selection it is possible to select high voltage between 60kV and 86kV, in 2kV steps and anodic current from 6 mA to 12 mA with 1 mA steps. The positioning of the primary slide collimator is automatic.

The values of exposure factors given in the tables of paragraph 8.18.1, set as default, are guidelines.

The real adjustment of these values depends on different conditions, such as the preference of the user for very/little exposed images.

5.2.3 EVO XP function (Additional projection package) - Optional

The unit, both the base and the version with cephalometric device, is prearranged to be fitted with the EVO XP (Additional projection package), function, which enables to perform the following examinations:

- The right or left Emi-panoramic is used when the patient is known to have a problem only on one side of the arch, in order to reduce the radiation
- The reduced dose Panoramic reduces the dose radiated on the dentition by excluding the ascending rami of the TMJ from the exams
- The frontal dentition enables to perform examinations of the front part (roughly from canine to canine)
- The dentition with improved orthogonality reduces the overlap of the teeth, thereby improving the diagnosis of interproximal decay
- Bitewing left or right, allows the execution of examination of the lateral dentition (generally from eighth to fourth) with a trajectory that reduces the overlap of the teeth
- Bitewing (left and right) sequentially performs both bitewings, showing them on the same image.

NOTE:

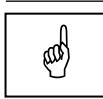
All these examinations can be added to Rotograph EVO 3D systems already installed in the field.

NOTE:

The code inserted into Rotograph EVO 3D to enable the optional examinations is protected by a Unique Identification Code (UIC); in the event the UIC is not present or is faulty, an error **E107** will be shown.

Pressing the "Patient entrance" (6) key will reset this condition,

although at the end of the start-up position, only the Panoramic, Sinus, and TMJ functions will remain active.


The UIC code is simply an identifier of the single Rotograph EVO 3D unit; in order to enable the optional functions it is necessary to request the activation code from Villa Sistemi Medicali, which derives from the Unique Identification Code or from the device serial number.

6. TECHNICAL CHARACTERISTICS

General features		
Device type	Rotograph EVO 3D	
Manufacturer	VILLA SISTEMI MEDICALI Buccinasco (MI) Italia	
Class	Class II B for European Directive for Medical Devices 93/42 Class II for Canadian MDR Class I with type B applied parts according to IEC 60601-1 Class II according to 21CFR- subchapter J	
Operating mode	Continuous with adaptive duty cycle	
Protection degree	IPX0	
Rated line voltage	220-240 V~	110-120 V~
Line frequency	50/60 Hz	
Maximum line current	7 A @ 230 V~ 50/60 Hz	15 A @ 115 V~ 50/60 Hz
Absorbed power	1.5 kVA @ 230 V~ 50/60 Hz	1.6 kVA @ 115 V~ 50/60 Hz
Protection fuse (F1)	7 A T	15 A T
Switching supply protection fuse (F2)	1.6 A T	3 A T
Generator card protection fuses	F1: 10 A F F2: 5 A HF F3: 2 A T	
Line apparent resistance	0.5 Ω max	--
Line voltage regulation	--	< 3% @ 99 V~
Rated output voltage (kVp)	60 ÷ 86 kV _p , with 2 kV _p steps	
Anodic current	6 ÷ 10 mA, with 1 mA steps for PAN, TMJ and Sinus 6 ÷ 12 mA, with 1 mA steps for Ceph (up to 76 kVp) 6 ÷ 10 mA, with 1 mA steps for Ceph (from 78 kVp to 86 kVp)	
Additional filter for wide range sensor cover (for 3D exams)	<< 1.2 mm Al eq. @ 70 kVp	
Additional filtration for PANCEPH sensor cover	0.1mm Al eq. @ 70 kVp	

Exposure times	
EVO Panoramic	14.4 s Adult / 13.3 s Child
Panoramic STD	13.8 s Adult/Child
EVO Emi-panoramic	7.8 s Adult / 7.3 s Child
STD Emi-panoramic	7.4 s Adult / 7.3 s Child
EVO Reduced dose Panoramic	11.9 s Adult / 10.8 s Child
STD Reduced dose Panoramic	11.4 s Adult/Child
Improved orthogonality dentition	11.9 s Adult/Child
Frontal dentition	4.4 s Adult/Child
Bitewing	3.2 s right / left 6.3 s right and left
TMJ mouth closed/open	2.44 s per image for left and right joint in open and closed condition for a total of 9.7 s
SINUS	9.4 s
Volumetric 3D exams	11.2 s for Dentition and Sinus 10.1 s for TMJ Left and TMJ Right (each)
Cephalometry (Ceph)	Variable exposure time depending on the type of resolution and size selected. Minimum 4.5 s (18x22nR), maximum 15 s (30x22hR)
Exposure time accuracy	± 10 %
Examination modes	
Examination selection	<ul style="list-style-type: none"> Automatic selection for Adult and Child, 3 Sizes Dentition type selection (in Panoramic) Manual selection Collimator with automatic positioning
Panoramic NOTE: Some of these exams are optional and depend on the system configuration.	<ul style="list-style-type: none"> EVO Panoramic Standard Panoramic RH and LH Emi-panoramic Reduced dose Panoramic Improved orthogonality dentition Frontal dentition Bitewing L/R Bitewing L and R
TMJ (Temporo-Mandibular Joint)	TMJ mouth closed/open

Examination modes		
SINUS	Sinus P/A projection	
Volumetric 3D exams	Automatic selection for Adult and Child, 3 sizes chosen between 6 types of exam: entire Dentition, Mandibular Dentition, Maxillary Dentition, TMJ Left, TMJ Right, Sinus	
Cephalometry and Carpus	<ul style="list-style-type: none"> Normal resolution in Latero-Lateral or Antero-Posterior projections (different sizes) High resolution in Latero-Lateral or Postero/Anterior projections (different sizes) High resolution Carpus exams Motorised soft tissue filter 	
3D Dentition reconstructed volume (*)		
Entire volume	93 mm x 82 mm (Diameter x Height)	
Mandibular volume	93 mm x 52 mm (Diameter x Height)	
Maxillary volume	93 mm x 40 mm (Diameter x Height)	
Image magnification		Geometric magnification
Adult / Child standard Panoramic	1 : 1.28 (constant over dentition part)	1 : 1 (**)
TMJ open/closed mouth, 4 images	1 : 1.25 (nominal)	1 : 1 (**)
Sinus	1 : 1.27 (nominal)	1 : 1 (**)
Ceph (on the sagittal medial plane in LL projection)	1 : 1.10	1 : 1 (**)

(*) NOTE:

For Canadian market, the 3D reconstructed volume are:

- Entire volume: 80 mm x 80 mm (Diameter x Height)
- Mandibular volume: 80 mm x 52 mm (Diameter x Height)
- Maxillary volume: 80 mm x 40 mm ((Diameter x Height)).

() WARNING:**

The declared image magnification value is valid after proper software calibration.

Tube-head characteristics	
Model	MRE 05
Manufacturer	Villa Sistemi Medicali S.p.A. 20090 Buccinasco (MI) Italia
Maximum tube voltage	86 kV _p
kV _p accuracy	± 8 %
Maximum anodic current	12 mA
Anodic current accuracy	± 10 %
Output radiation linearity	< 0.2 according to standard IEC 60601-2-7:1998 paragraph 50.102.2
Duty cycle	Adaptive duty cycle depending on the exposure parameters: from 1 : 8 (at 60 kV, 6 mA) up to 1 : 20 (at 76 kV, 12 mA). Further reduction for three exposures in close-up sequence: from 1: 3.6 (at 60 kV, 6 mA) up to 1 : 9 (at 76 kV, 12 mA).
Nominal power	1.032 kW (86 kV _p - 12 mA -4s)
Total filtration	2.5mm Al eq. @ 70 kV _p
HVL (Half value layer)	> 2.0 mm Al eq. @ 60 kV _p > 2.7 mm Al eq. @ 74 kV _p > 3.2 mm Al eq. @ 86 kV _p
Transformer insulation	Oil bath
Cooling	By convection
Leakage radiation at 1 m	< 0.5 mGy/h @ 86 kV _p - 12 mA - 3s duty cycle 1/16
Tube-head maximum thermic capacity	310 kJ

X-ray tube characteristics	
Manufacturer	CEI Bologna (Italy)
Type	OPX 105
Nominal focus size	0.5 IEC 60336
Inherent filtration	0.5mm Al eq.
Anode tilt	5°
Anode material	Tungsten
Nominal maximum voltage	105 kV _p
Filament max current	4 A
Filament max voltage	8 V
Anode thermal capacity	30 kJ
Wide range sensor (Flat Panel)	
Sensitive area	130 x 130 mm
Sensor pixel size	127 µm, 254 µm in binning 2x2
Scintillator screen	Cesium iodide CsI
Number of sensor pixels (H x L)	1024 x 1024 (binning 1x1) 512 x 512 (binning 2x2)
Voxel dimensions	185 µm (binning 2x2) 93 µm (binning 1x1) available in partial volume exams
PANCEPH sensor	
Sensitive area (H x L)	220 x 6 mm
Pixel dimension	48 µm, 96 µm in binning 2x2 (CEPH hR), 144 µm in binning 3x3 (CEPH nR)
Pixel (H)	1536 in nR, 2304 in hR
NOTE: The number of horizontal pixels (columns that make up the image) depends on the type of examination selected and the resolution set.	

NOTE:

The Rotograph EVO 3D version without cephalometric arm, uses only the wide range sensor both for 3D images as well as for Panoramic images (narrow beam), while is also used the second PANCEPH sensor in the version with Cephalometric arm.

Laser centring devices

Patient positioning is guaranteed by 2 laser beams that align the sagittal and Frankfurt/Ala trago planes (please refer to relevant paragraphs for detailed explanation).

Wave length	650 nm ± 10 nm
Divergence	< 2.0 mRad
Optical power	< 1 mW
Classifications	Class 1 laser device according to standard IEC 60825-1:1993 + A1:1997 + A2:2001

Mechanical features

Image receptor-focus distance (PAN, TMJ and Sinus)	52 cm (20.4")
Image receptor-focus distance (CEPH)	165 cm (65")
Telescopic motorised column run	85 cm (33.5")
Maximum total height	245 cm (96.4")
Weight	<ul style="list-style-type: none"> • 161 kg (354 lb) base version • 186 kg (409 lb) version with Ceph
Column weight	87 kg
Weight of arm support, rotating arm, tube-head and sensor holder	74 kg
Ceph arm weight	25 kg
Leg weight (optional)	30 kg
Sensor holder weight	2 kg

Working conditions

Minimum dimensions of the room (refer to the Service Manual)	<ul style="list-style-type: none"> • 130 x 120 cm (52" x 47.2") without CEPH arm • 145 x 200 cm (57" x 78.7") with CEPH arm
Recommended dimensions of the room (refer to the Service Manual)	<ul style="list-style-type: none"> • 130 x 140 cm (51.2" x 55.1") without CEPH arm • 160 x 220 cm (63" x 86.6") with CEPH arm
Maximum working temperature range	+ 10° ÷ + 40°
Relative working humidity (RH) range	30% ÷ 75%
Temperature range for transport and storing	- 20° ÷ + 70°
Humidity range for transport and storing	< 95% without condense
Minimum atmospheric pressure for transport and storing	630 hPa

6.1 Dose per Area Product (DAP) in 3D examinations

	mA					
	6	7	8	9	10	
kV	60	77.8	90.8	103.7	116.7	129.6
	62	83.9	97.8	111.8	125.8	139.8
	64	90.1	105.1	120.2	135.2	150.2
	66	96.6	112.7	128.8	144.9	161.0
	68	103.3	120.5	137.7	154.9	172.1
	70	110.1	128.5	146.8	165.2	183.6
	72	117.2	136.7	156.3	175.8	195.3
	74	124.5	145.2	166.0	186.7	207.5
	76	131.9	153.9	175.9	197.9	219.9
	78	139.6	162.9	186.2	209.4	232.7
	80	147.5	172.1	196.7	221.2	245.8
	82	155.6	181.5	207.4	233.4	259.3
	84	163.8	191.1	218.5	245.8	273.1
	86	172.3	201.0	229.8	258.5	287.2

Table 1: DAP values in $\mu\text{Gy} \times \text{m}^2$ for Dentition and Sinus examinations at 11.2 seconds

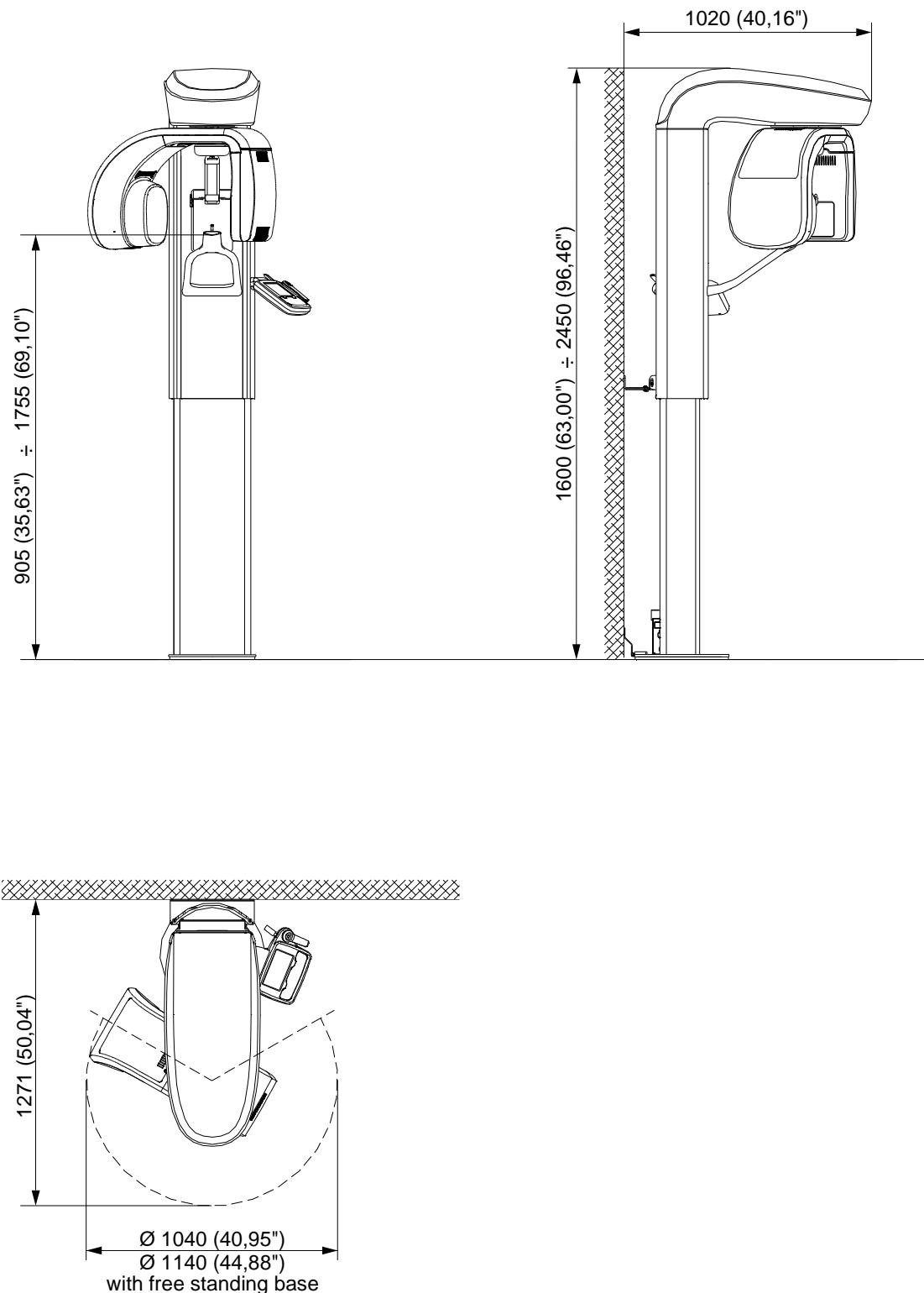
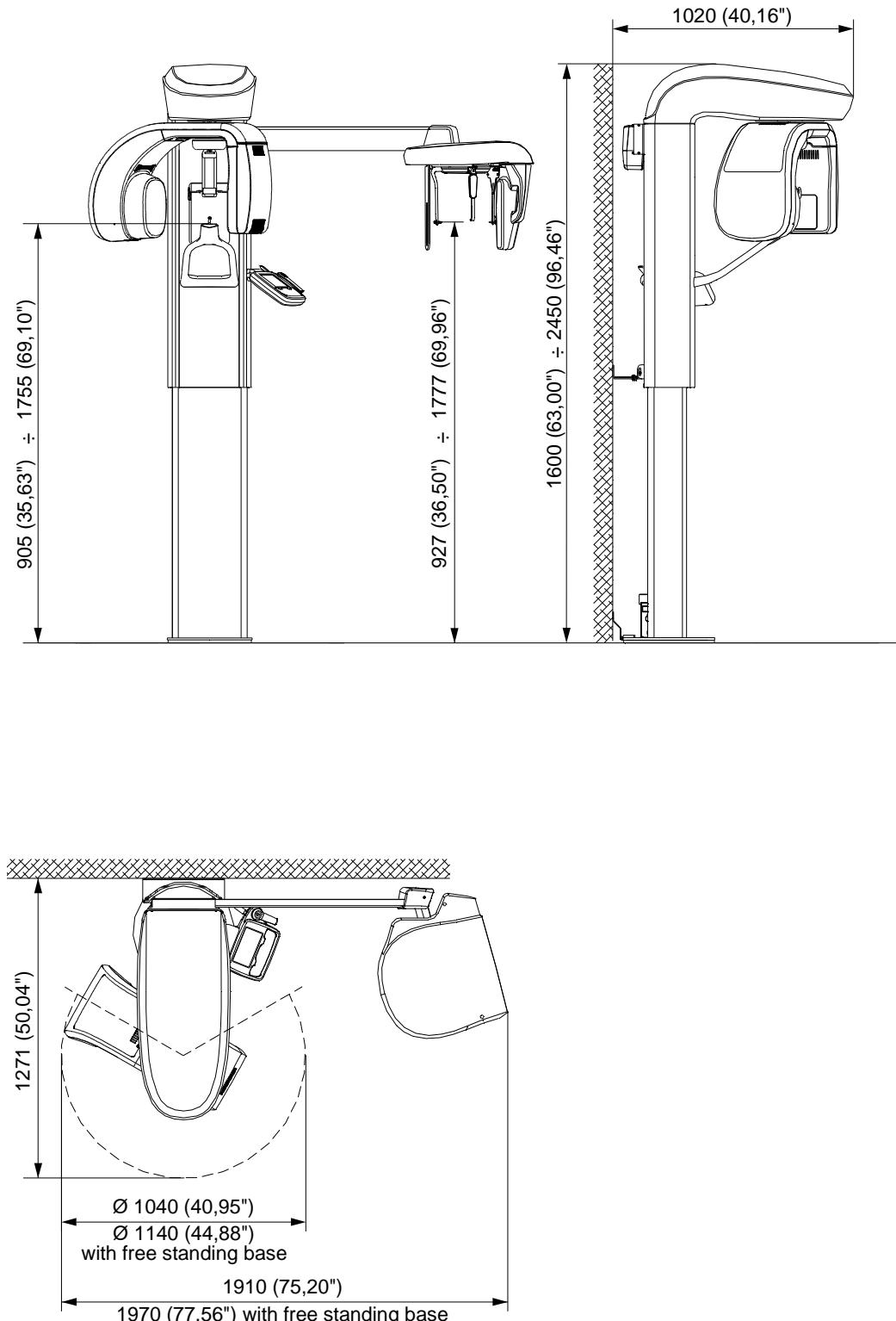
	mA					
	6	7	8	9	10	
kV	60	70.1	81.8	93.5	105.2	116.3
	62	75.6	88.2	100.8	113.4	126.0
	64	81.3	94.8	108.4	121.9	135.5
	66	87.1	101.6	116.1	130.7	145.2
	68	93.1	108.6	124.2	139.7	155.2
	70	99.3	115.9	132.4	149.0	165.5
	72	105.7	123.3	140.9	158.5	176.2
	74	112.3	131.0	149.7	168.4	187.1
	76	119.0	138.8	158.7	178.5	198.3
	78	125.9	146.9	167.9	188.9	209.8
	80	133.0	155.2	177.3	199.5	221.7
	82	140.3	163.7	187.1	210.4	233.8
	84	147.7	172.4	197.0	221.0	246.2
	86	155.4	181.3	207.2	233.1	259.0

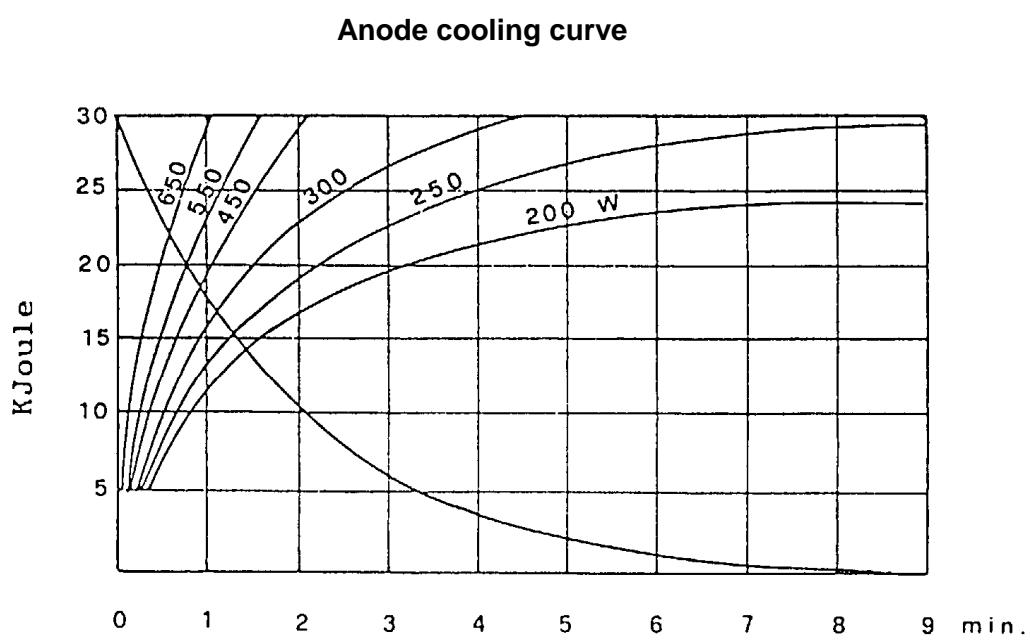
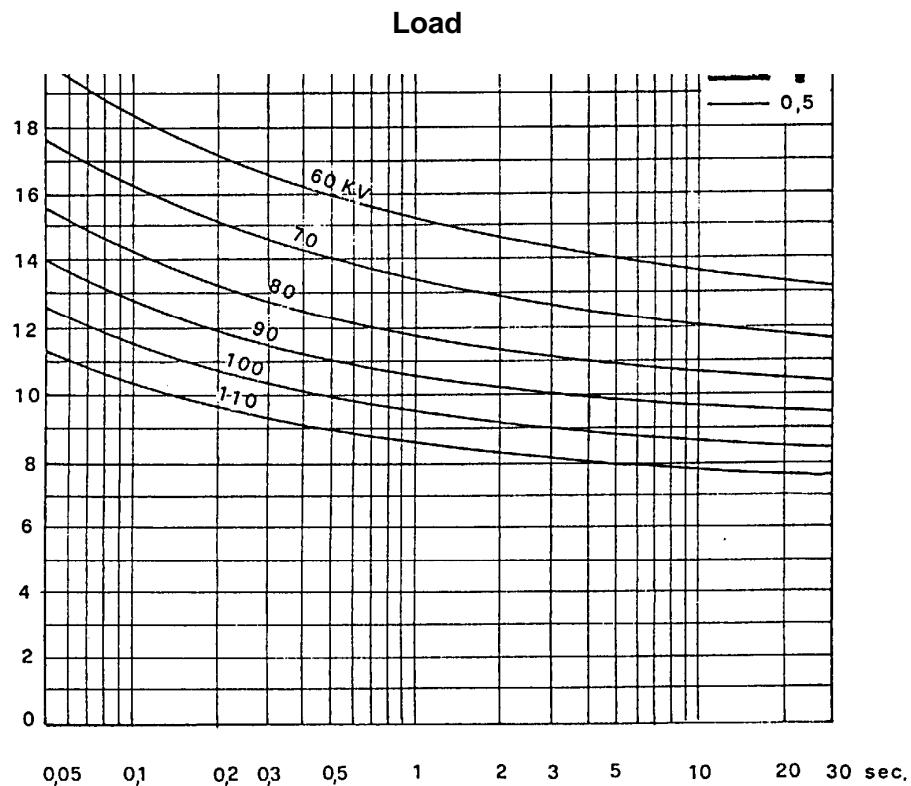
Table 2: DAP values in $\mu\text{Gy} \times \text{m}^2$ for TMJ Left and TMJ Right examinations at 10.1 seconds

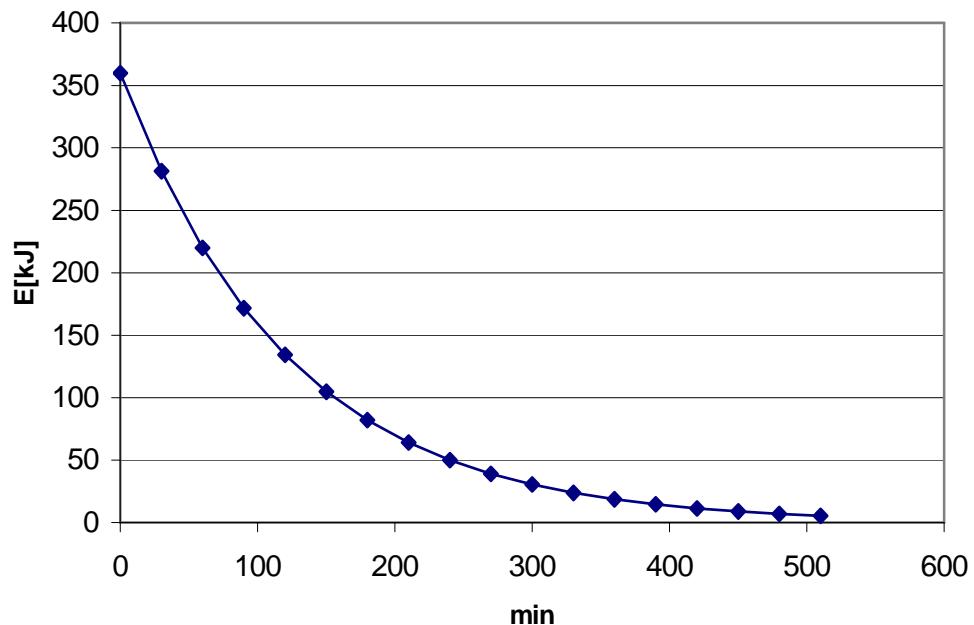
NOTE:

In the partial volume exams, the DAP is the 57% of entire volume DAP.

6.2 Dimensions

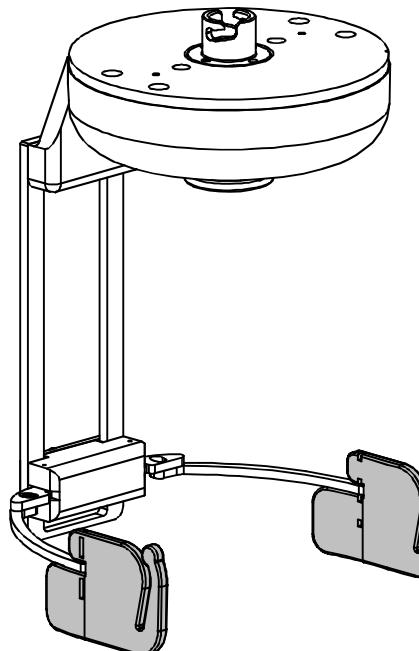





Figure 6 - Rotograph EVO 3D dimensions standard version

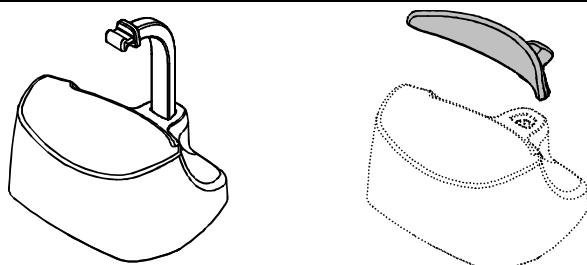

*Figure 7 - Rotograph EVO 3D dimensions
version equipped with cephalometric unit*

6.3 Loading curve of the tube and cooling curve of the anode

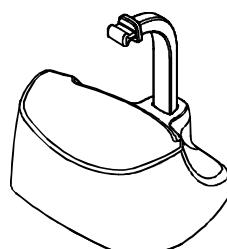
Tube "CEI - OPX/105" (0.5 IEC 60336)

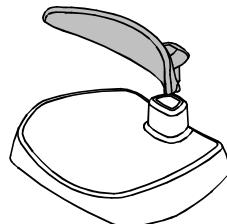


Tube-head heating and cooling curve

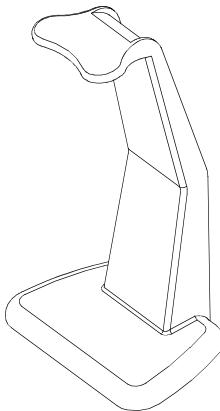


6.4 Separate parts supplied with Rotograph EVO 3D

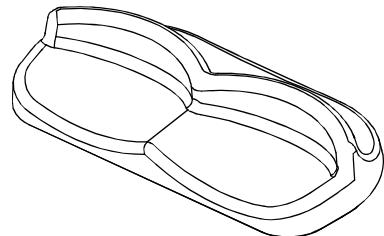

Rotograph EVO 3D comes with the following removable accessories:


Temple clamp centring device for standardised and volumetric exams

Chin rest for standard panoramic, supplied with removable appendix for edentulous patients


Reduced height chin rest for standard panoramic

Chin rest for Sinus, in non volumetric 3D mode, made by lowered chin rest and appendix for edentulous patients



Standard TMJ positioning support

Chin rest centring device for TMJ volumetric 3D exams

Bites, cephalometry ear centring pins, head strips for 3D exams, bite protective sleeves

Disposable and non-sterilised parts. Replace after every use.

NOTE:

These removable parts are considered "type B applied parts", in accordance with IEC 60601-1, 2nd edition.

Some of these parts do not carry identification codes due to their small size. The use of these parts on other devices is not possible, since they are parts designed specifically for the Rotograph EVO 3D.

6.5 Applied safety regulations

Rotograph EVO 3D complies with the following standards:

0051 Ensures the compliance of the Rotograph EVO 3D to the Medical Device Directive 93/42/EEC and its revised version for medical devices issued by the European Community.

- Canadian Medical Device Regulations
- 21 CFR Subchapter J
- General safety:
IEC 60601-1:1988+A1:1991+A2:1995
IEC 60601-1-1:2000
IEC 60601-1-4:1996+A1:1999
IEC 60601-2-7:1998
IEC 60601-2-28:1993
IEC 60601-2-32:1994
IEC 60601-2-44:2001
UL 60601-1 (1st edition)
CAN/CSA C22.2 No. 601.1-M90 (2nd edition) +A1 + A2
- Electromagnetic compatibility:
IEC 60601-1-2:2001
- Protection against radiation:
IEC 60601-1-3:1994
IEC 60825-1:1993+A1:1997+A2:2001
- Usability:
IEC 60601-1-6:2004

Classifications

The EVO Rotograph 3D is a class I electro-medical device and Type B as of IEC 60601-1 classification, foreseen for a continuous working at intermittent load.

The classification according to EC Directive 93/42 and subsequent amendments for medical devices is Class II B.

According to Canadian MDR, the equipment belongs to class II.

According to FDA 21 CFR, the equipment belongs to class II.

6.6 Note on constant magnification for Panoramic and TMJ (mouth open/closed) examinations

NOTE:

Rotograph EVO 3D is based on an arch shape and the temporomandibular joint determined on statistical studies.

This shape is taken as "standard" for the dento-maxillo-facial complex.

Rotograph EVO 3D follows a rototranslation path which maintains constant the magnification factor stated in the Technical Characteristics of each type of exam along this "standard" shape only along the dentition area. The patient's anatomy can differ significantly from the statistical model, so the magnification factor is not maintained and can be different from the value stated. Based on his experience and competence, the user has to judge this variation.

IN ANY CASE, X-RAY IMAGE CANNOT BE USED TO PERFORM CALCULATIONS OF DISTANCES, ANGLES ETC.

WARNING:

The measurement of lengths on digital images depends on the specific length calibration of the program used.

It is therefore very important to check the length calibration of the program to obtain the measurement of the anatomical part.

6.7 Measurement method of technical factors (paragraph for authorised personnel)

WARNING:

The execution of these measurements foresees the removal of the cover of the HF unit with consequent access to live parts inside.

The steps outlined in the Service Manual should be followed for the direct measurement of technical elements.

WARNING:

During the Panoramic, the value of the expository parameters varies according to a fixed curve, to compensate the variations in absorption by the patient's tissues. In this way, it is possible to obtain a good uniformity of the image contrast. In particular, the set value is decreased in the initial stage and increased in correspondence with the canine/incisor area to compensate for the effect of increased attenuation due to the spine.

The value displayed is the value selected by the user, while the actual value may be different; this fact should be considered if checking the exposure parameters using the diagnostic mode.

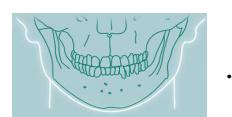
The accuracy of the exposure parameters, kV and mA, stated in the Technical Specifications section, refers to the accuracy compared to the actual value set by the system.

In any case, the manufacturer guarantees that the accuracy of the exposure parameters is within the maximum limits required by international regulations on the safety of medical devices IEC 60601-1 and attachments. In particular, in accordance with the IEC 60601-2-7, the maximum deviation (inclusive of the correction and instrumental uncertainty) is within the $\pm 10\%$ for kV and within $\pm 15\%$ for the anode current.

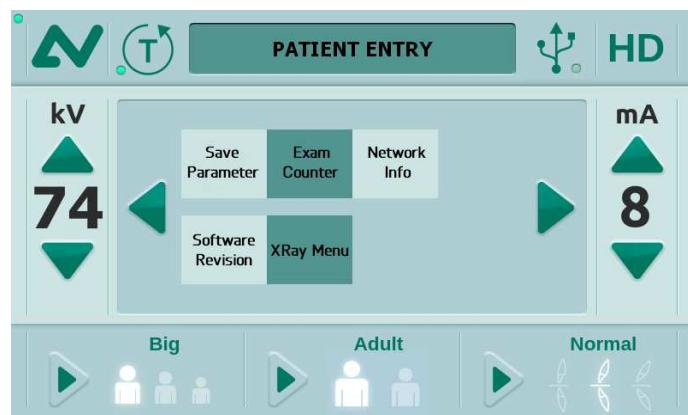
6.8 Verification method of technical factors (paragraph for authorised personnel)

The exposure factors (kV, time and dose) can be verified using the so-called "non-invasive method".

WARNING:

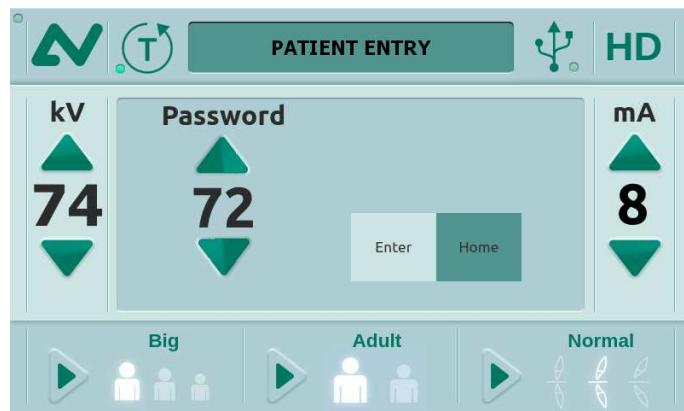

The unit is equipped with a collimator with a very narrow X-ray beam. Measurements made with a non-invasive instruments and a narrow beam can be difficult and/or unreliable; therefore a special probe must then used with a reduced sensitive area.

It may be helpful to use a fluorescent screen to locate the X-ray beam and thus position the probe of the instrument.


The procedure to measure the exposure parameters with a non-invasive instrument is as follows:

1. With the device on, select the Panoramic Examination mode pressing

by pressing the "Exam Mode Selection" area (11)

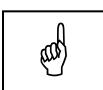


2. Press the key "Service Menu" (18) ; the following image will be displayed:



3. Select "XRay Menu".

4. Using the relevant increase/decrease arrows , select the password equal to "72".



5. Confirm with key "Enter". The following image will be displayed:

WARNING:

The following operations foresee the emission of rays, therefore the Authorised Technician should pay the utmost attention and respect the safety standard in force in the related country.

NOTE:

This program allows to perform the measurement of the exposure parameters with the tube-head in the fixed position (not rotating) and constant parameters.

6. Position the measuring instrument.

7. The kV, mA and s parameters can be modified by pressing the

increase key and the decrease key of the kV, mA and s on

the display.

The parameters can vary within the limits shown in the following table:

Parameter	Minimum value	Maximum value
kV	60	86
mA	6	12
s	0,2	15

Table 3

8. Perform an exposure by pressing the rays button; the technical factors can then be read on the instrument.

NOTE:

Performances are insured if the measurement of technical factors occurs with invasive method. Measurements taken with a non-invasive method could introduce errors due to the tolerance of the instruments or incorrect implementation of the measurement.

9. Press key "Home" to end the control program, the display will

visualize the "Service Menu". Pressing key (18) the unit will return to standard mode.

6.9 Open Source Software

Parts of the software included in this product use the LINUX® operating system and software packages that operate in that environment. Such packages are used without alterations and are subject to various open source licenses such as the General Public License (GPL or LGPL) and others.

You may obtain the corresponding source code by writing to:

Villa Sistemi Medicali
Via delle Azalee, 3
20090 – Buccinasco – MI
Italy
Ph. +39-02-48 859 1
Fax. +39-02-48 859 303
e-mail: vsminfo@villasm.com

For proper processing of your request it is necessary to indicate "Open Source Code" in the subject of your message. Distribution charges may apply.

All Open Source Software will be provided "AS IS"; there are (i) no representations or warranties and (ii) neither Villa Sistemi Medicali, nor any of the developers or contributors to Open Source Software shall have any liability or obligation to the customer with respect to Open Source Software beyond what is granted in the particular Open Source Software license. Any modification to software code residing in Villa Sistemi Medicali product shall void all warranties, render product "Not for Clinical Use" and not compliant to applicable standards. Villa Sistemi Medicali shall have no liability or obligation for products containing modified software.

6.10 CBCT Conditions of Operation

The following table lists the conditions of operation for the unit working in CBCT modality.

Quantity	Range
Tube current (mA)	from 6 to 10 mA
kV	from 60 to 86 kV
Exposure time	21.2s
X-ray filtration	2.5mm Al eq. @ 70 kVp
Nominal Tomographic section thickness	0.185 mm
Image receptor area	130x130 mm

6.10.1 Reference plane

The reference plane offset is the horizontal plane passing on the chin rest of the unit.

The Figure 8 shows the position of the reference plane and its location with respect to the chin rest, the focal spot and the volume irradiated by the X-ray Cone Beam. Each exam has a proper chin support that gives the proper reference plane offset.

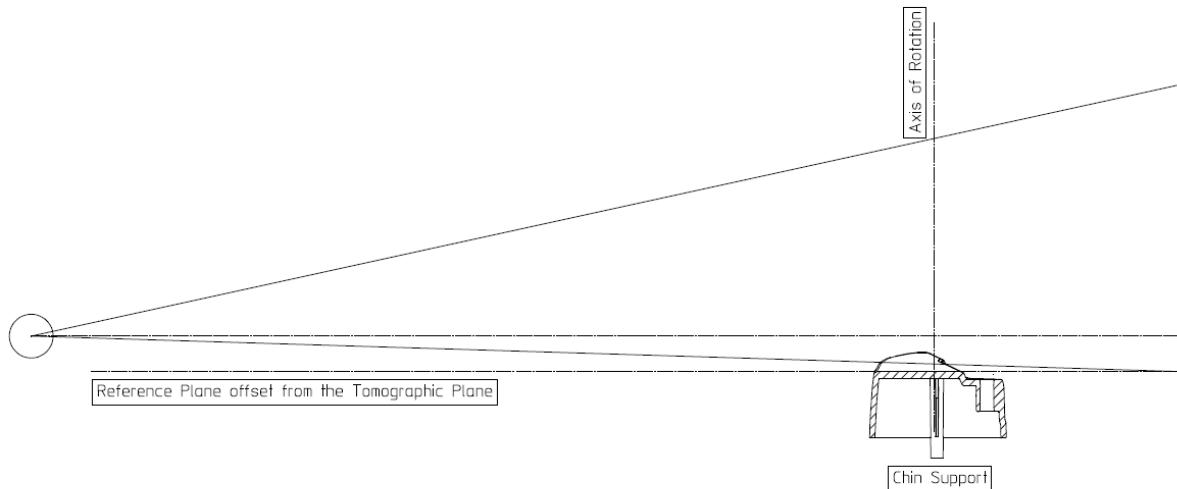


Figure 8: Reference plane offset from the Tomographic Plane

6.11 CTDI information

The following dose information are measured using a dosimetry head phantom compliant with the specifications of CFR 21 1020.33. The phantom is a circular cylinder of polymethyl-methacrylate (PMMA) of density $1.19+/-0.01$ grams per cubic centimeter. The phantom is 15.0 centimeters high and has a diameter of 16.0 centimeters since the system is designed to image the head (head scanners).

The phantom has holes just large enough for the placement of a dosimeter(s) along its axis of rotation and along a line parallel to the axis of rotation 1.0 centimeter from the outer surface and within the phantom.

The CTDI values are measured as $CTDI_{100}$ as recommended in the FDA Guidance doc. *"Provision for Alternate Measure of the Computed Tomography Dose Index (CTDI) to Assure Compliance with the Dose Information Requirements of the Federal Performance Standard for Computed Tomography"* of October 20, 2006.

6.11.1 Measure conditions

The conditions of operations are set according to the following table:

Quantity	Range
Tube current (mA)	From 6 to 10 mA
kV	From 60 to 86 kV
Exam time	21.2s
X-ray filtration	2.5mm Al eq. @ 70 kVp
Nominal Tomographic section thickness	0.185 mm
X-ray beam collimation	130x130 mm

6.11.2 Measurement procedure

1. The phantom is placed on the support of the chin rest of the machine.
2. The dose detector is placed in the phantom in one of the positions at a time.
3. The default values for adult and normal size (82kV - 9mA) are selected.
4. An exposure is performed.
5. The dose measure is recorded.

6.11.3 Measured values

Different dose measurements are performed to find the location of the plane where the dose measurement at 1cm interior from the surface of the phantom is maximum.

Such location is perpendicular to the mid-sagittal line of the imaged volume on the left side of the patient considering the patient orientation.

The following table lists the $CTDI_{100}$ values measured in different dose detector positions:

Measurement Location	Dose Value
$CTDI_{100}$ (Center)	11.1 mGy
$CTDI_{100}$ (Peripheral, MAX)	13.2 mGy
$CTDI_{100}$ (Peripheral, 90°)	6.5 mGy
$CTDI_{100}$ (Peripheral, 180°)	13.1 mGy
$CTDI_{100}$ (Peripheral, 270°)	11.6 mGy
$CTDI_{100}$ (Peripheral, average)	11.1 mGy

weighted $CTDI_{100}$ is $CTDI_w = 11.1mGy$

and

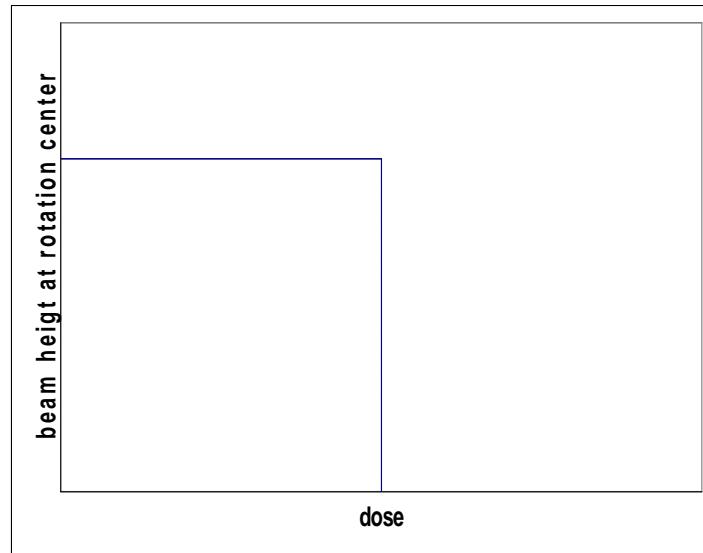
volume $CTDI_w$ is $CTDI_{vol} = CTDI_w = 11.1mGy$

6.11.4 Dose values for other conditions of operation

The following table lists the relative CTDI values for different conditions of operations, normalized to the value of CTDI measured in the center of the Phantom at nominal conditions of operation (82kV, 9mA, full dentition)

($\text{CTDI}_{100} \text{ (Center)}$):

Conditions of Operation	CTDI Value Relative to $\text{CTDI}_{100} \text{ (Center)}$
60kV	0.38
74kV	0.74
86kV	1.13
6mA	0.65
8mA	0.88
10mA	1.10
Mandibular volume	0.57
Maxillary volume	0.57


The following table lists the relative CTDI values for different kV values, normalized to the maximum value of CTDI measured 1cm from the outer surface of the Phantom at nominal conditions of operation (82kV) ($\text{CTDI}_{100} \text{ (Peripheral, MAX)}$):

Conditions of Operation	CTDI Value Relative to $\text{CTDI}_{100} \text{ (Peripheral, MAX)}$
60kV (minimum value)	0.44
86kV (maximum value)	1.12

Maximum deviation from the nominal values given in the preceding tables is $\pm 25\%$.

6.11.5 Dose profile

In the following graph the dose profile is displayed along a line z perpendicular to the tomographic plane measured in the center of the Dose Phantom.

6.12 QC Program

The QC program is based on the usage of the 3D quality phantom (or equivalent) and the software "QC tool".

The phantom consists of several discs of PMMA with inclusions of different materials (PVC and Air) for performing the required measurements. After the image acquisition, specific tomograms are exported in Dicom Format from the imaging program and imported into the "QC tool".

The following paragraphs describe the tests to be performed for Image Quality Control.

To run the software, double click on "QC tool" icon on the desktop or on file "QC tool.exe" which is located at C:\Program Files (x86)\VILLA SM\QC tool.

After each test, record the measurements in the logbook provided in paragraph 6.12.12. At the end of the test a report named "QC_results.txt" will be saved on the Desktop.

NOTE:

In case you find any value out of the acceptable range, please call your service representative for a system inspection.

The QC tool user interface is divided in the following areas:

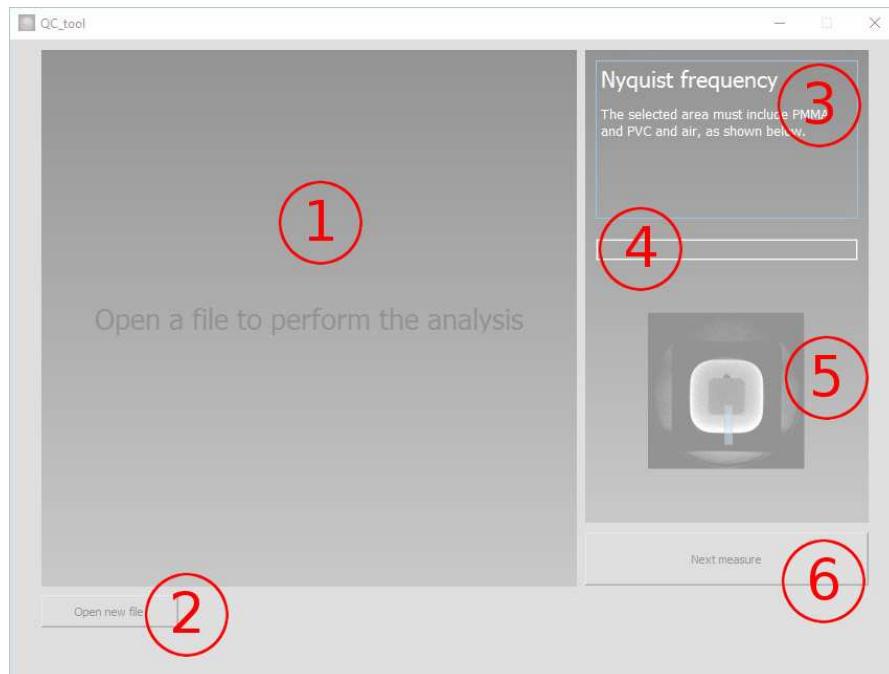
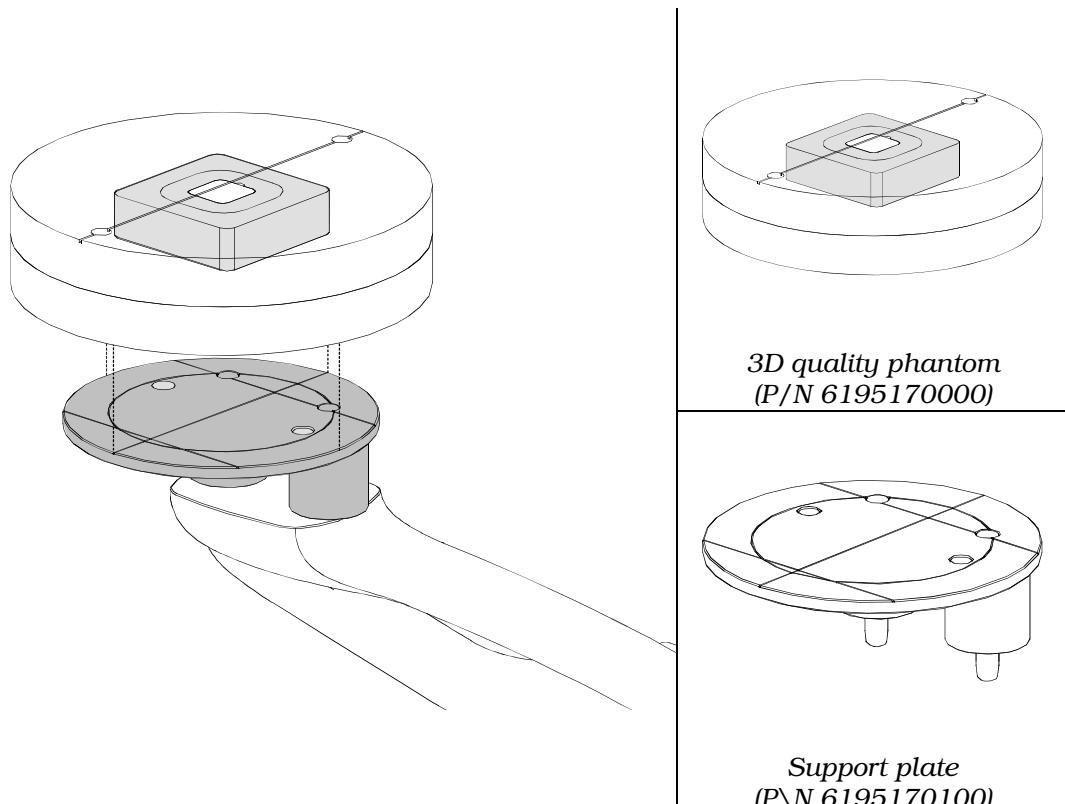


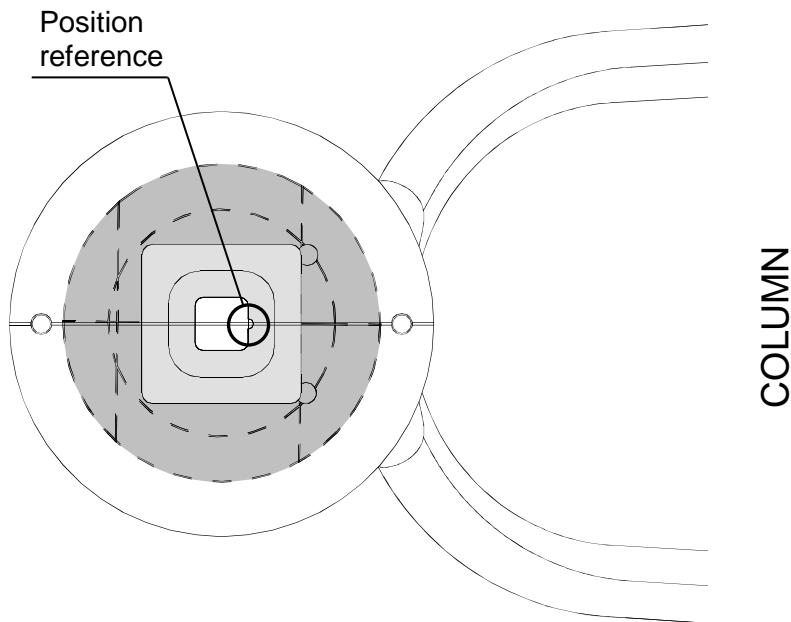
Figure 9

1. Image viewer
2. Button to open a file
3. Name and description of the current measure
4. Measured value
5. Example image which shows how to perform the measurement
6. Button to proceed/skip to the next measure


6.12.1 Schedule

The QC program has to be performed after installation and every 6 months, unless local regulations require a different interval.

6.12.2 3D test image acquisition


In order to acquire the 3D image needed for the quality test, create (if not present) a patient "Quality Test" and perform the following steps:

1. Place the support plate on the chin rest and place the 3D quality phantom on the plate, in such a way as the reference central line is on the top.

Figure 10

2. Switch ON the laser and move the phantom in order to align its reference central line to the sagittal plane; the PVC insertion must be centred inside the internal circle of the support plate.
On the PVC insertion is present a position reference; this reference must be positioned towards the column.

Figura 11

3. Run a 3D full dentition acquisition, setting the radiological parameters to the default values for a standard adult patient.
4. Right click on the acquired image and select "Export DICOM" from the drop-down menu to save the ".dcm" files in a temporary folder.

6.12.3 Nyquist frequency

Open the "QC tool" program and select "Open new file" button (2 - Figure 9); a file browser will open. Select the file "Slice0170.dcm" from the temporary folder where the DICOM files have been saved (step 5 - paragraph 6.12.2). Verify that the displayed image looks like the following:

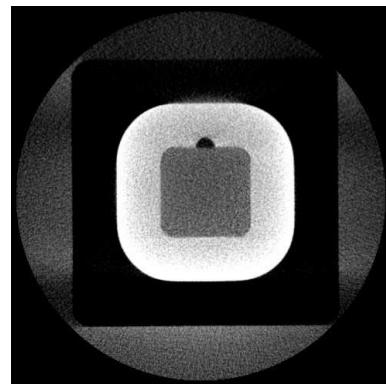


Figure 12

Once the image is displayed, left click and drag to draw an area as shown in the example picture on the right panel (5 - Figure 9). Verify that the Nyquist frequency value displayed is greater or equal to 1. Report this value in the "Nyquist frequency" cell of the QC log book at paragraph 6.12.12.

6.12.4 Contrast to noise ratio

Click on "Next measure" button (6 - Figure 9) to proceed with the "Contrast to noise ratio" test, which gives information about noise performances.

The image will be loaded automatically; left click to place an area as shown in the example picture on the right panel.

Two values are displayed:

- **Contrast to Noise Ratio:** verify that the displayed value is greater or equal to 2.5. Report this value in the "Image noise" cell of the QC log book at paragraph 6.12.12
- **Contrast:** verify that the displayed value is greater or equal to 250. Report this value in the "Low contrast resolution" cell of the QC log book at paragraph 6.12.12.

6.12.5 Spatial resolution

Click on "Next measure" button (6 - Figure 9) to proceed with the "Modulation Transfer Function" test, which gives information about spatial resolution.

The image will be loaded automatically. Left click to place an area as shown in the sample picture on the right panel.

Two values are displayed, which are characteristic points of the Modulation Transfer Function expressed in lp/mm:

- MTF10% - spatial frequency at which the frequency response is 10% of the maximum value. This value must be greater or equal to 1 lp/mm
- MTF50% - spatial frequency at which the frequency response is 50% of the maximum value.

Report the values in the "MTF10" and "MTF50" cells of the QC log book at paragraph 6.12.12.

6.12.6 CT number

Click on "Next measure" button (6 - Figure 9) to proceed with the "CT number" test, which gives information about the CT number of the different materials within the volume.

The image will be loaded automatically, left click and drag to draw an area as shown in the example picture on the right panel (5 - Figure 9).

The mean and standard deviation of the gray levels inside the area are displayed. The mean value must be in the range from -200 to 200 HU.

Report this value in the "CT number" cell of the QC log book at paragraph 6.12.12.

6.12.7 Length and width measures

Click on "Next measure" button (6 - Figure 9) to proceed with the "Length and width" test, which gives information about the geometry of the 3D reconstruction in the tomographic plane.

The image will be loaded automatically, left click and drag to draw an area as shown in the example picture on the right panel (5 - Figure 9). Both measures have to be in the range from 54.0mm to 66.0mm (nominal 60mm).

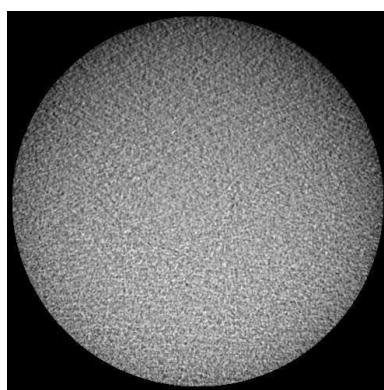
Report these values in the "Length measure" and "Width measure" cells of the QC log book at paragraph 6.12.12.

6.12.8 Slice thickness

Click on "Next measure" button (6 - Figure 9) to proceed with the "Slice thickness" test, which gives information about the geometry of the 3D reconstruction along the z axis.

The image will be loaded automatically, left click and drag to draw an area as shown in the example picture on the right panel (5 - Figure 9). Verify that the Slice thickness value displayed is in the range from 15.3mm to 18.7mm.

Report these values in the "Slice thickness" cell of the QC log book at paragraph 6.12.12.



NOTE:

This measure require the entire 3D dataset, if the files are missing from the selected folder, this measure would not be available.

6.12.9 Homogeneity

Click on "Next measure" button (6 - Figure 9) and press the "Open new file" button. A file browser will open: select the file "Slice0090.dcm" from the temporary folder where the DICOM files have been saved (step 5 - paragraph 6.12.2). Verify that the displayed image looks like the following:

Figura 13

The measurement will be performed automatically. The Homogeneity value must be greater or equal to 5.

Report these values in the "Homogeneity" cell of the QC log book at paragraph 6.12.12.

6.12.10 Dose at the isocenter

NOTE:

Perform this test only if required by local regulation.

For this analysis three dose measurements are required. The dose measures must be taken in free air, with the dosimeter as close as possible to the image receptor plane and the exposure parameters set to Full Dentition 3D, Adult patient, Medium size. The dose values should be expressed in mGy.

Two values are computed starting from the three dose measures:

- dose at the isocentre—dose computed in the center of rotation, where the patient is, according to the geometry of the machine
- dose maximum aberration—index of the dose reproducibility, expressed as percentage deviation from the mean value.

6.12.11 Acceptance index

NOTE:

Perform this test only if required by local regulation.

In the last section an index is displayed summarizing the quality of the 3D image with respect to the given dose.

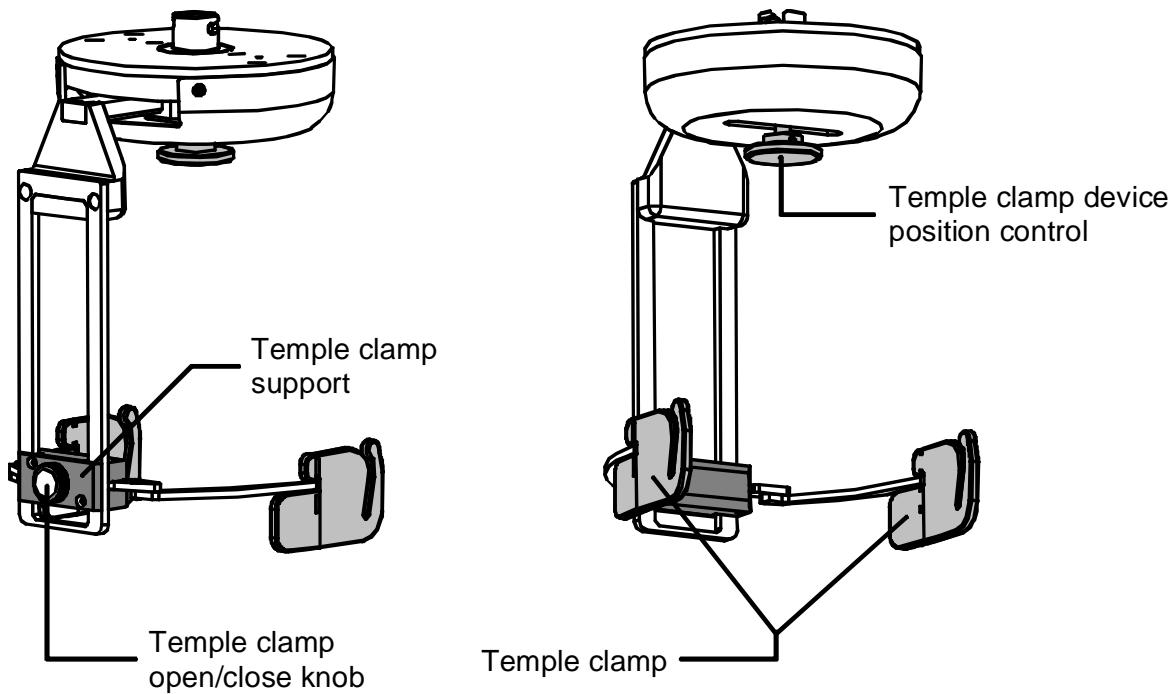
It is computed starting from the quality parameters previously measured: Contrast to Noise Ratio, MTF50% and Dose at the isocentre. The index is expressed in $1/(mGy\ cm^2)$.

NOTE:

At the end of the test a report named "QC_results.txt" will be saved on the Desktop. This file can be used to fill the QC log book at paragraph 6.12.12.

A following test will overwrite the last "QC_results.txt" file on the Desktop. If both files need to be saved, before performing another test rename or move the file to another path.

6.12.12 QC log book


Record in the following table the results of QC program described in the previous paragraphs. Report the value and the pass/fail result.

Pass Criterion	DATE
> 1	Nyquist frequency
CNR \geq 2.5	Image noise
Contrast $>$ 250	Low contrast resolution
MTF 10% \geq 1	High contrast resolution
MTF 50%	
Mean value of HU [-200; +200]	CT number
54.0mm -66.0mm	Width measure
54.0mm -66.0mm	Length measure
15.3mm -18.7mm	Slice thickness
\geq 5	Homogeneity
--	Dose at isocentre
--	Dose max aberration
\geq 100 1/(mGy cm ²)	Acceptence Index

7. USE OF THE TEMPLE CLAMP CENTRING DEVICE

The temple clamp centring device of the Rotograph EVO 3D is designed to help centre the patient and keep them in the correct position during the examination.

The temple clamp centring device is described in the following figure:

The temple clamp unit has three different vertical positions (Figure 14); position adjustment is performed using the special latch on the rear top part of the vertical support of the headrest.

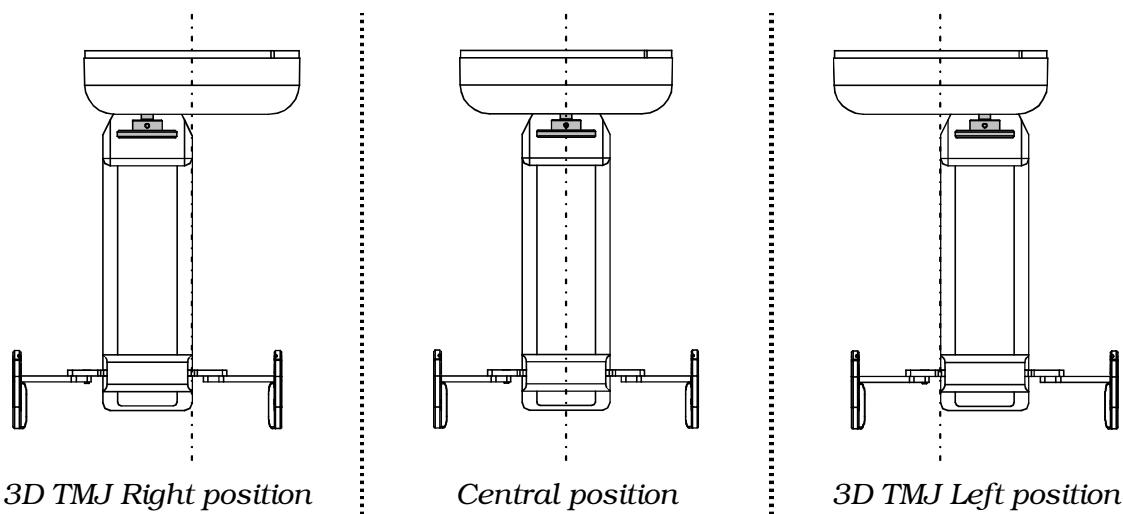
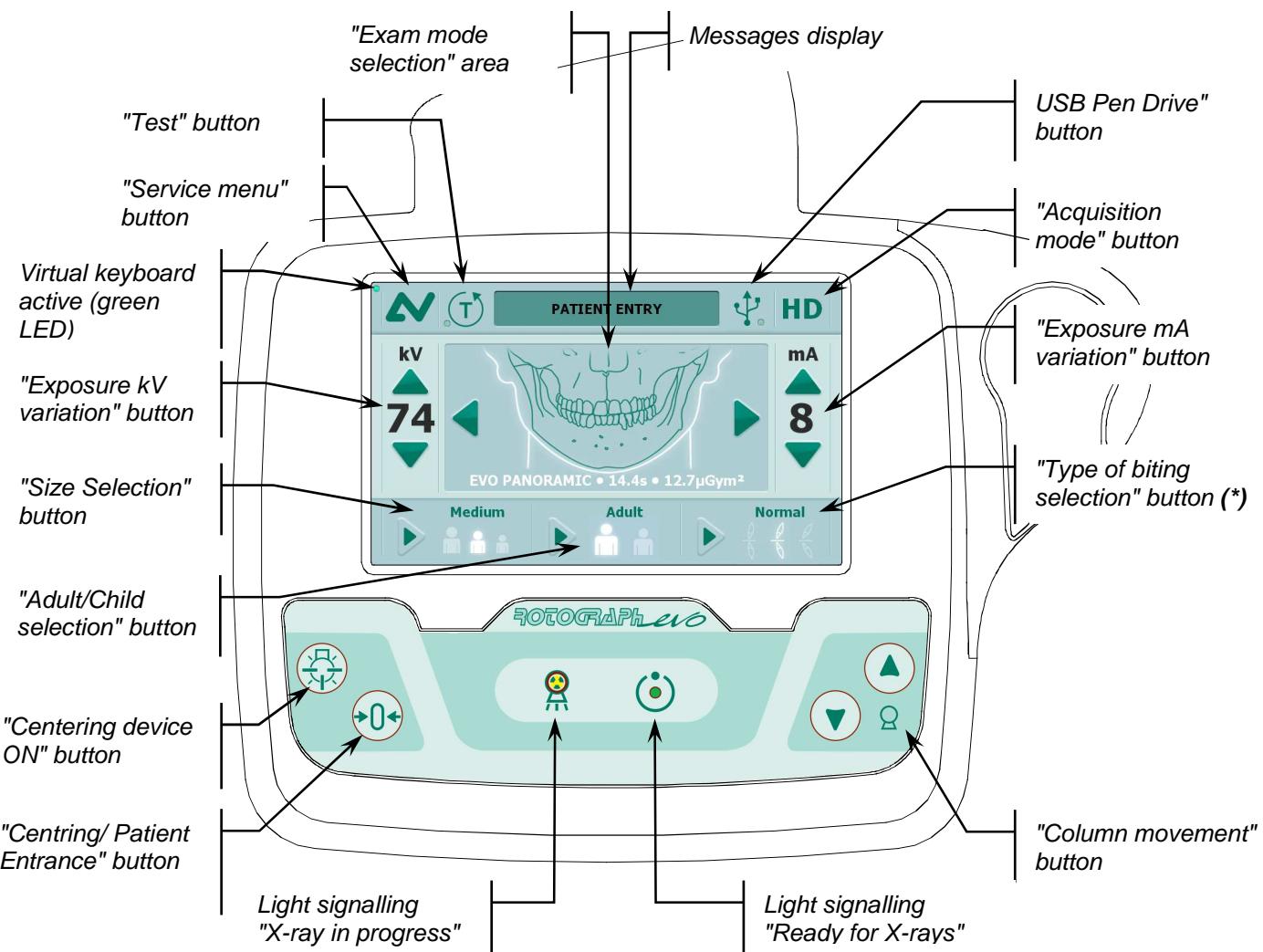


Figure 14

The central position must be used for Panoramic type tests with narrow beam and 3D volumetric Dentition and Sinus tests.


In left and right TMJ 3D volumetric examinations, the headrest must be used in combination with the appropriate TMJ volumetric chin support (see paragraph 8.3), adjusted in such a way so as to bring the interest area within the X-rayed volume.

The height of the temple clamp can be adjusted in all exams by acting on the central support to adapt it to the height of the patient.

8. GENERAL INSTRUCTIONS FOR USE

8.1 Control panel - description and functions

The Rotograph EVO 3D keyboard is divided into function areas. The next figure shows a general view of the keyboard, while details on each functional area are provided in the following pages.

(*) In 3D Dentition exam menu, this button is replaced by the "Partial volume selection" button. See following pages for more information.

Figure 15

WARNING:

The USB port on the keyboard is used only for service purpose.
Do not connect USB Pen or external Hard Disk.

The next figures show a general view of the displays of the Service menu.

Figure 16: Service Menu display - Page 1

Here following a sample description of each key functionality:

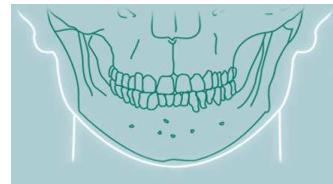
- **Save parameter:** allows to store the automatic exposure parameters (see paragraph 8.18)
- **Exam counter:** allows to display the numbers of exam performed in each exam mode
- **Network info:** allows to display the IP addresses and SubNet mask of the devices connectet to the Network
- **Software revision:** allows to display the software revision of the Rotograph EVO D system microcontroller
- **XRay Menu:** this key is reserved to authorised personnel.

Figure 17: Service Menu display - Page 2

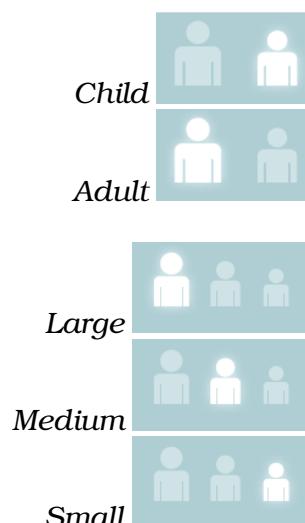
- **Graphic Custom:** this key is reserved to authorised personnel.

Press key "Home" to go back to the "Service Menu".

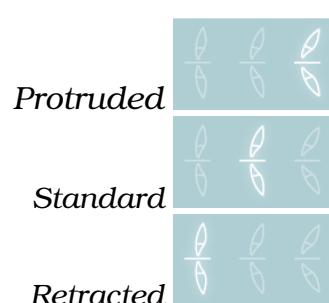
Pressing key (18) the unit will return to standard mode.


The "Centring/Patient Entrance" key is used for:

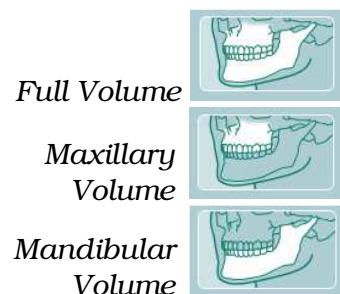
- start/finish the exam procedure
- bring the rotation arm to the patient entrance position at the end of the exam.

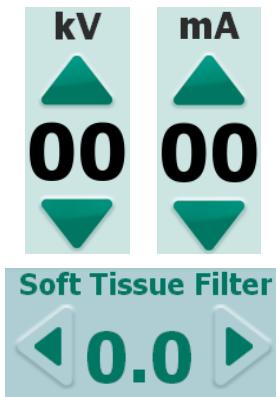

The "Exam Selection Mode" area takes place by means of three keys: the first one, the main area, helps select the exam mode between Panoramic, TMJ, Sinus, 3D Dentition and Cephalometric.

The other two, identified by the arrows, help navigate within the exams of each mode.


It is possible to select the anatomic mode examinations (anatomic selection), using prefixed exposure values.

This kind of selection enables to choose between Adult/Child, each with three different sizes (small, medium, large).


The Panoramic mode enables to select the patient's type of biting between: protruded, standard or retracted, as indicated within the button.


The arch selection does not influence the values of kV and mA but acts on the position of the focus layer.

The portion of the volume of the patient can be selected in the 3D Dentition mode, between: Full Volume, Maxillary Volume or Mandibular Volume, as indicated within the button.

This selection acts on the partial volume collimators that exposes the patient to a different irradiation.

Furthermore there is the possibility to manually select the exposure parameters; in this case, it is possible to set the parameter with the desired value.

The parameters available are: kV and mA (Soft Tissue Filter position only in cephalometry).

There are two light indicators; the first one on the right indicates the condition "Machine Ready", indicating the user that by pressing the X-ray button key once more, X-rays emission will start; the second indicates the effective emission of X-rays.

The movement of the column is controlled by the appropriate keys. Two pre-set speeds are possible. The movement of the column is inhibited during the preparation of the unit.

The key "Luminous centring device" helps turn ON/OFF the laser centring devices that allow the correct positioning of the medial-sagittal and Frankfurt/Ala trago planes, by adapting Rotograph EVO 3D to the patient's anatomy.

The key "Test" is used to avoid the X-rays emission, in order to check the absence of collisions with the patient. When the LED is green, the test function is enabled.

8.1.1 Key function description

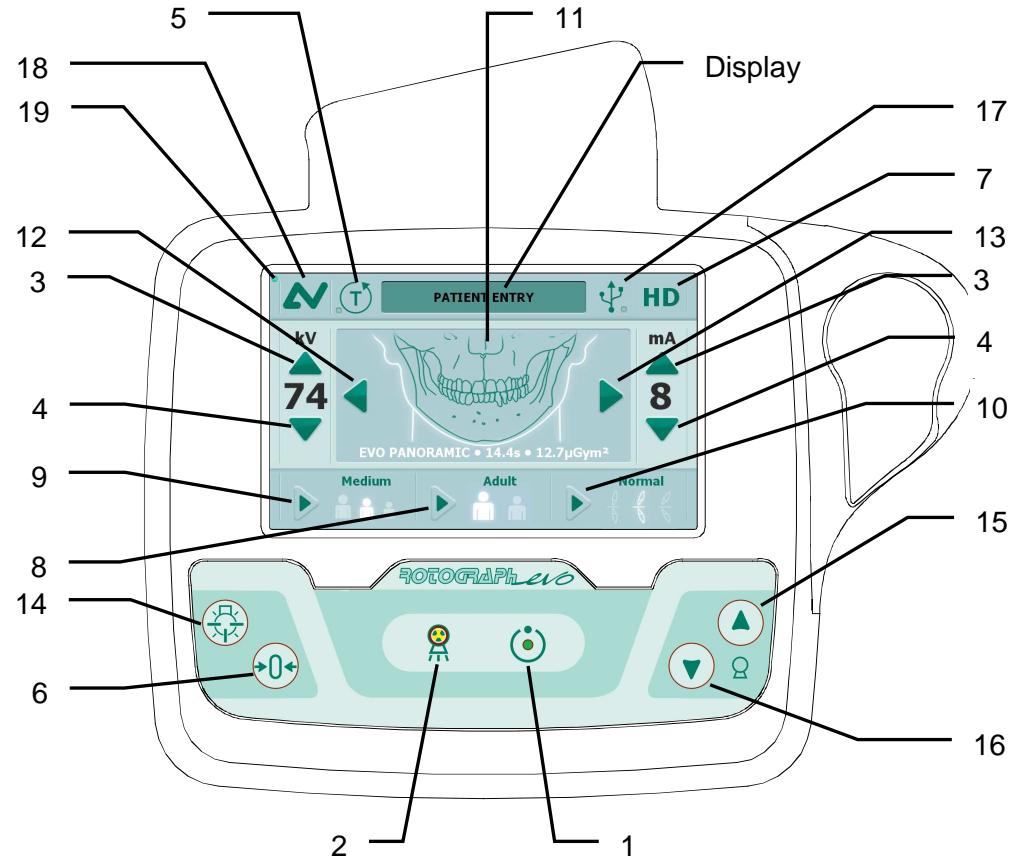


Figure 18 - Control panel

LEGEND:

Messages

Display: indicates operative messages and warnings

Signal lights

1 - Light indicating the machine is ready for X-ray emission (green LED)

2 - Yellow LED indicating X-ray emission

Manual setting of exposure parameters

3 - KV/mA increase key

4 - KV/mA decrease key

Preparation functions

5 - Key to set Test function (green LED)

6 - Key for:
> Resetting and realigning the device's axes (in case of collision with patient or in case of release of rays button)

> Repositioning the rotation group (to bring the group to the initial position after the examination and to exit from the "making an exposure" mode
> Confirmation

7 - Key to select the modality in use:
> High Definition or High Speed in Ceph exams
> High Definition or eXtra Definition in Partial Volume exams

Anatomic selection

8 - Patient selection key: Adult or Child

9 - Size selection key: Small, Normal, or Large

10 - Key for:

> Arch selection: Protruded, Standard or Retracted (for panoramic execution)

> Partial Volume selection: Full, Maxillary or Mandibular (for 3D Dentition examination)

Examination mode

11 - Exam mode selection area

12 +13 - Type of exam selection keys

Centring devices

14 - Sagittal and Frankfurt plane centring device ON/OFF key

Column height adjustment

15 - Column up key

16 - Column down key

Other

17 - USB Pen Drive key

18 - Service menu key

19 - Virtual keyboard active (green LED)

8.2 Digital sensors

Rotograph EVO 3D is equipped with two types of digital sensors, depending on the version used:

- **Wide range sensor:** is the sensor used for the volumetric reconstruction of the anatomical region of interest from two-dimensional images. This sensor is also used to obtain narrow beam Panoramic type images with a rays field of 13 cm in height. All Panoramic, TMJ and Sinus images belong to this type. The wide range sensor, mounted in the sensor holder, can be rotated to free the rays passage section in order to perform cephalometric exams.
- **PAN/CEPH sensor:** used for cephalometric images.

The Rotograph EVO 3D control system has the task of checking the consistency of all the safety measures that allow the correct use of the digital sensors; in particular:

- Prevent the acquisition when the management and imaging system is not ready to receive the image, with the message "Sensor not ready"
- Prevents the CEPH exposure when the PAN sensor holder is not completely open to free the path of the X-ray beam. The following message is displayed "Open cassette holder".
- Prevent 3D volumetric exposure when the sensor holder is not in the PAN position; in this case the following message is displayed "Close cassette holder".

NOTE:

The PANCEPH sensor has a fall sensor; This sensor is also visible from the outside for controls by the user. Any falls are signalled by the sensor's change in colour (from white/transparent red). The digital sensor can still function properly even with this change of colour, which indicates a fall that may not have damaged the sensor.

8.2.1 Switching on the device

Press the green button on the base of the column to switch the system on; the display shows the starting image:

This image will be present for about 1 minute.

After this time the "Ready for X-ray" and the "X-ray emission" LEDs blink two times and on the display will be present the Villa logo.

NOTE:

During this phase, Rotograph EVO D does not perform any movement, it just performs a series of checks which, in the event of negative result, could require the intervention of the technician.

The only problem that can be solved by the user is related to the position of the PAN sensor holder; in this case, the following message will be displayed:

" CLOSE PANO SENSOR HOLDER "

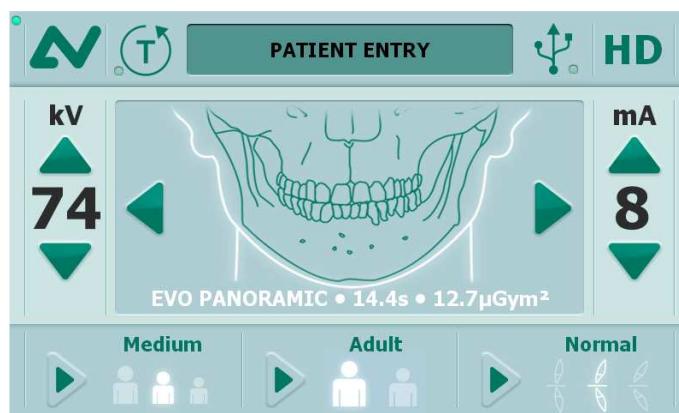
When the self-diagnosis is completed, the following appears on the display:

" MACHINE SETTING – Press >0< "

Press key (6) to start the device alignment phase.

Once the key has been pressed, the message disappears and the display shows the following message during the alignment of the axes:

" WAIT FOR MACHINE SETTING "


WARNING:

During this phase, the machine checks for possible obstacles that may create collisions simulating the movements performed during the examination.

After 3 seconds, the following configuration will be automatically set by the system:

- ADULT with the display of the corresponding graphic in the button
- MEDIUM SIZE with the display of the corresponding graphic in the button
- NORMAL DENTITION with the display of the corresponding graphic in the button

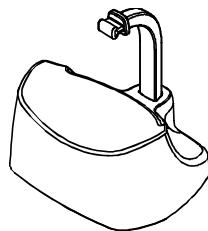
and the display shows (for instance):

When the connection with the digital sensor is properly established, the equipment is ready for exposure.

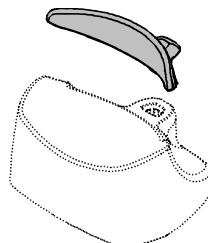
NOTE:

The above mentioned position is chosen also in the event that, for any reason, the device repeats the initialisation phase.

8.3 Positioning of chin support

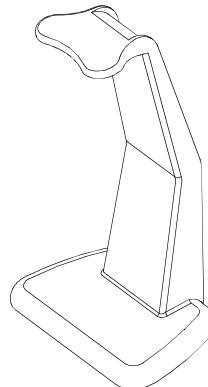

Rotograph EVO 3D is equipped with four types of chin support: a standard chin support with a special removable appendix for edentulous patients, one (lowered), for SINUS test, one to be used for TMJ examination in standard mode and one to perform the TMJ volumetric X-rays that features two different positions on the same support.

The standard chin support must be used, in Panoramic mode, with all the people who can assure a tight grip on the centring bite.


The appendix for edentulous patients must be applied only for patients who cannot assure a tight grip on the bite or are not co-operating and might move during the examination.

For the SINUS examination, the chin support is made by lowered chin rest and appendix for edentulous patients.


For standard TMJ examination, a specific positioner is included, allowing the patient to open and close the mouth without touching any positioner with the chin.


Standard Panoramic chin support

Appendix for edentulous patients

SINUS chin support

TMJ positioning support

3D TMJ chin support

NOTE:

A fifth chin support, at a low height for standard Panoramic, is provided to ensure a better view of the lower section of the chin for patients with particular anatomy.

This chin support is marked by a down arrow "▼" on the front of the chin support itself.

NOTE:

Always remove the chin support when performing Ceph examinations.

8.4 General notes on the acquisition of images

The Rotograph EVO 3D control system verifies that the safety conditions against accidental emissions are respected; these conditions are tested both before the passage from the centring position to that of the start exam, as well as before enabling the emission itself and throughout the examination.

The emission of rays is enabled if:

- the image acquisition and management program is active
- a patient has been selected, **to whom the acquired images will be assigned**
- the acquisition program displays the virtual keyboard and the sensor is ready for acquisition, in other words it has completed all the preliminary acquisition stages.

If not, the Rotograph EVO 3D display shows the error message:

" DIGITAL SENSOR IS NOT READY "

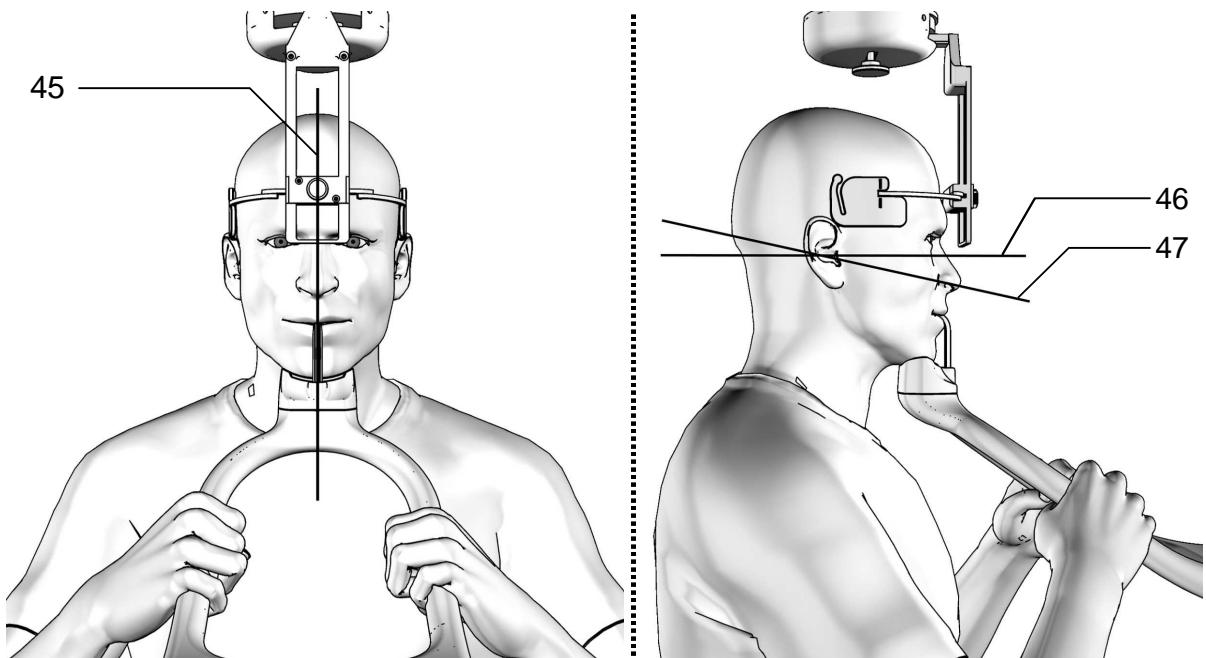
Refer to the manual of the image management and acquisition program to correct the error.

NOTE:

The said message appears even if the above conditions are verified but the acquisition system is employed in preliminary operations to the acquisition itself. In this case, the message will disappear at the end of these operations, allowing to continue the exam.

The CEPH exposure is blocked if the PAN sensor holder is not completely open to free the path of the X-ray beam. The following message is displayed:

" OPEN PANORAMA SENSOR HOLDER "


The 3D volumetric exposure is blocked if the sensor holder is not in the PAN position; in this case the following message is displayed:

" CLOSE PANORAMA SENSOR HOLDER "

8.5 Panoramic examination

When making a panoramic examination, the tube-head support arm (X-rays generator) make a continuously rotating movement.

During the examination, the patient centering is assisted by two linear luminous laser beams, which indicate the position of the reference planes; the corresponding patient's planes need to be aligned with these planes. The latter is held in place, during the examination phase, through the centring-temple clamp device and the chin support.

Legend of Reference Lines

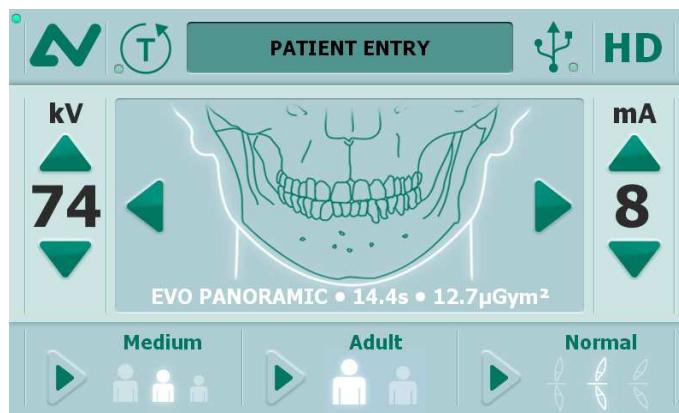
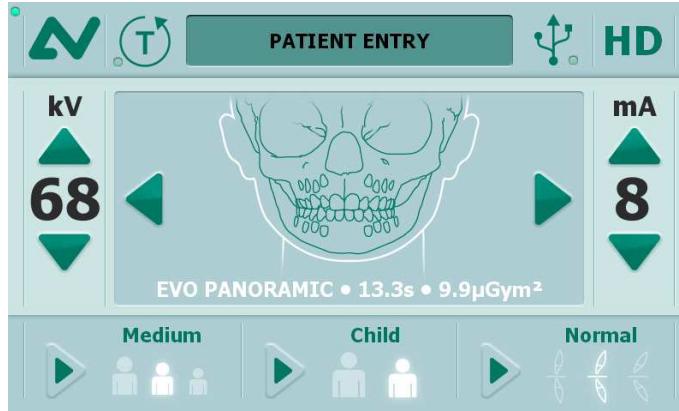

- 45 Mid-Sagittal line
- 46 Frankfurt plane line: plane that identifies a line that ideally connects the hole in the auricular canal - external auditory meatus - with the bottom edge of the orbital fossa
- 47 Ala-tragus line: plane that identifies a line that ideally connects the anterior nasal spine and the centre of the external auditory meatus.

Figure 19

8.5.1 Preparation of the device

When the unit is switched on, the Panoramic Examination is selected as standard. If the operator has previously made another kind of examination, to select Panoramic press "Exam Mode Selection" area


(11) until to the following image is displayed:

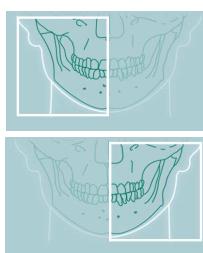
The system positions itself with the following configuration:

- ADULT with the lighting up of the corresponding LED
- MEDIUM SIZE with the lighting up of the corresponding LED
- NORMAL DENTITION with the lighting up of the corresponding LED and the display of default radiological parameters (if this is the first Panoramic exposure carried out) or those used in the last examination.

Pressing key (8) to change from Adult to Child, the display will show:

Once the settings have been completed, the chin support must be placed in position (see the operative notes in paragraph 8.3).

The "Exam Mode Selection" (11) area enables the selection of specific submodes, selectable by means of the keys "Arrow right" (13) and "Arrow left" (12), enabling the sliding in one direction or another.

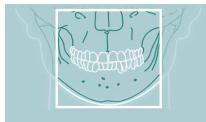

For the Panoramic examination, the system is factory set with two different trajectory: EVO Panoramic and Panoramic STD. The EVO Panoramic is more tolerant towards typical errors of patient positioning, thanks to an enlarged focal layer in the region of the frontal dentition. During installation it is possible to select as first the most used trajectory type or enable only one of them (refer to Service Manual - Password 92 menu – Pano order submenu).

Where the option EVO XP (Extended Projection Package) is enabled, the following selections are possible:

EVO Panoramic -> STD Panoramic -> Right Emi-panoramic ->
Left Emi-panoramic -> Improved orthogonality dentition ->
Reduced dose Panoramic -> Frontal dentition -> Bitewing Right ->
Bitewing Left -> Bitewing RGT,LFT -> EVO Panoramic.

This selection is cyclic, so pressing the button repeatedly will change the selected mode.

- **Right / Left Emi-panoramic**



In the Emi-panoramic mode, right or left, only the corresponding half arch is irradiated; the emission starts from the beginning, to just after the mid sagittal plane for the right part. For the left, it starts just before the mid sagittal plane and continues until the end of the rotation.

These two kinds of examinations are usually used when it is already known that the patient has a problem on only one half of the arch, so it is possible to reduce the irradiation of the patient.

To position the patient, follow the instructions given for the Panoramic examination.

- **Improved orthogonality dentition**

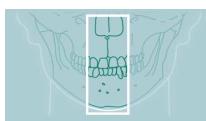
The improved orthogonality Panoramic delivers the image of the pure dental arch cutting out from the image the ascending rami branches of the temporo mandibular joint; the trajectory of the rotating arms is, however, optimised for a better orthogonality between the X-ray beam and the incident sections of near teeth.

Thus the image has reduced overlapping of the teeth, improving the diagnosis of interproximal decay.

As a consequence of the different trajectory, the focus layer, mainly in the front teeth area, is smaller and then patient positioning for this examination needs more care.

To position the patient, follow the instructions given for the Panoramic examination.

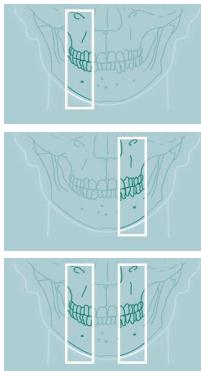
- **Reduced dose Panoramic**



The reduced dose Panoramic examination makes an X-ray only of the dental arch, excluding from the image the ascending rami of the temporo-mandibular joint; the examination is performed with the same trajectory of the standard Panoramic, by reducing the rays emission time.

This examination is used, for instance, during the treatment continuation phases or where the lack of pathologies of the same joint are already known.

To position the patient, follow the instructions given for the Panoramic examination.


- **Frontal dentition**

The Frontal dentition examination performs an X-ray of the dentition frontal area (roughly from canine to canine).

To position the patient, follow the instructions given for the Panoramic examination.

• **Bitewing**

The Bitewing examination, left or right, allow the execution of examinations of the lateral dentition (generally from eighth to fourth). The trajectory of the rotating arms is, however, optimised for a better orthogonality between the x-ray beam and the incident sections of near teeth.

Thus the image has reduced overlapping of the teeth, improving the diagnosis of interproximal decay.

Bitewing right and left sequentially perform both bitewing, supporting them on the same image.

To position the patient, follow the instructions given for the Panoramic examination.

NOTE:

Rotograph EVO 3D is based on an arch shape and the temporomandibular joint determined on statistical studies.

This shape is taken as "standard" for the dento-maxillo-facial complex. Rotograph EVO 3D follows a rototranslation path which maintains constant the magnification factor stated in the technical characteristics of each type of exam along this "standard" shape and in the dentition area. The patient's anatomy can differ significantly from the statistical model, so the magnification factor is not maintained and can be different from the value stated. Based on his experience and competence, the user has to judge this variation.

IN ANY CASE, THE X-RAY IMAGE CANNOT BE USED TO PERFORM CALCULATIONS OF DISTANCES, ANGLES ETC.

8.5.2 Anatomic / Manual Exposure

NOTE:

If the previous exam was carried out manually, just press the "Exam

Mode Selection" area (11)

to change to Anatomic exposure.

After setting the machine, it is possible to choose between the following two operating modes:

- **ANATOMIC:** with the values of kV and mA programmed on the basis of the type of patient and the size.
- **MANUAL:** with the possibility to vary the kV and mA values already set.

NOTE:

In manual condition, the setted kV and mA parameters values are displayed in green color.

It is possible to press key (8)

to change from Adult to

Child.

Press key (10)

to modify the type of biting from Normal

to Protruded or Retracted; the setted parameters values remain the same.

8.5.2.1 Anatomic exposure

Select the type of patient with the **Adult/Child** key (8).

Select the type of build with the **Size** (9) key (*small - medium - large*).

On the basis of these selections, the display will visualise the kV and mA settings as in the table.

Panoramic mode exposure values table				
	Adult		Child	
	kV	mA	kV	mA
Small	76	9	66	8
Medium	80	9	68	8
Large	82	9	70	8

Table 4

Select the conformation of the biting with key "Type of Biting Selection"

NOTE:

The type of biting does not affect the kV and mA values, but it affects the position of the focus layer, by adapting the rotation movement to the patient's anatomy.

8.5.2.2 Manual exposure

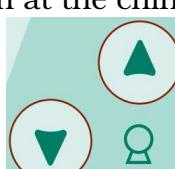
If the kV and mA combinations of the table Table 4 are not considered suitable for a specific examination, it will be possible to set new parameters using the manual mode.

To modify the kV or mA values, press any of the increase (3) or decrease (4) arrows of the kV or mA parameters; the values change their color from black to green.

A parameter can be modified by pressing the increase key (3) and the

decrease key (4) of that parameter repeatedly.

The kV value can vary between *60 and 86 kV, with 2 kV steps*.


The value of mA can vary between *6 and 10 mA, with 1 mA steps*.

NOTE:

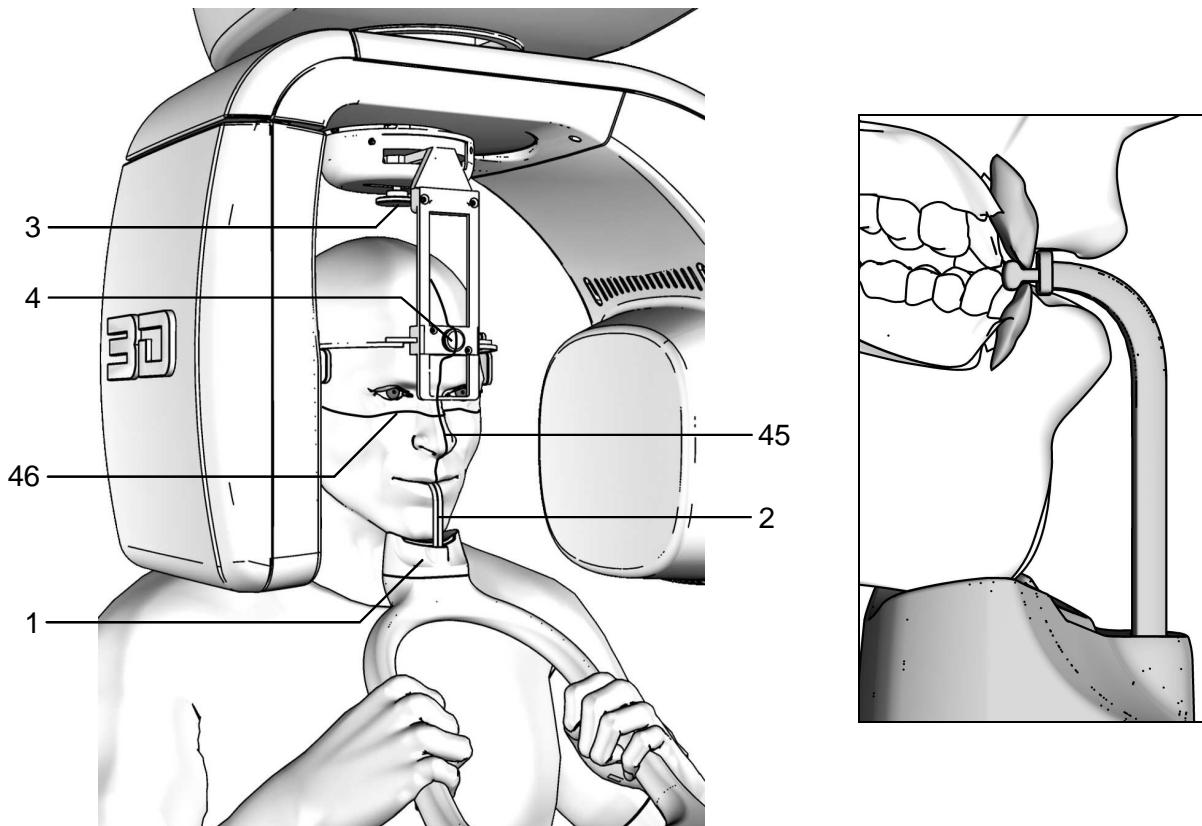
To change the values rapidly, keep the increase key (3) or decrease key (4) pressed.

8.5.3 Preparation of the patient

1. Ask the patient to remove all metallic objects located in the area to be X-rayed (necklaces, earrings, glasses, hairpins, movable dental prosthesis, etc.). Ensure that there are no thick garments in the area to be X-rayed (coats, jackets, ties, etc.).
2. Ask the patient to put on the protective apron, or something similar, making sure that it does not interfere with the trajectory of the X-ray beams.
3. Place the patient in a standing position at the chin support. With the keys "Column movement" (15/16) lift/lower the column until the chin support is aligned with the patient's chin.
4. Verify that the temple clamp device is in the central position (Figure 14), and if necessary move it using the appropriate control on the top of the support (3 - Figure 20).
5. Place the patient in temple clamp by placing the chin on the surface of the relevant support; the hands should rest on the front handgrips; the patient must bite the reference mark of the bite with his/her incisors (Figure 20). In case of edentulous patients, he/she must rest the chin against the reference shoulder of the edentulous chin support for edentulous.
6. Set the height of the temple clamp just above the patient's orbital bone.
7. Instruct the patient to close his eyes.
8. Press the key "Centring devices ON" (14) .

Two laser beams illuminate the line of the median sagittal plane and the horizontal line for the reference of the Frankfurt plane (Figure 19).

Position the patient's head in such a way as to ensure that the luminous beams fall in correspondence with the respective anatomical references (Figure 20).


The luminous beam of the Frankfurt plane can be adjusted according to the patient's height; this adjustment is achieved by adjusting the laser block on the side of the mirror.

NOTE:

The laser centring devices remain on for approximately 1 minute; shutdown can be anticipated by pressing the "Centring Device On" key (14) or, with alignment complete, by pressing the "Patient entrance" key

(6) to begin preparation for exposure.

Legend of Reference Lines

45 Sagittal medial line
46 Frankfurt plane line

Legend positioning devices and patient centring

1 Panoramic chin rest
2 Centring bite
3 Temple clamp device position control
4 Temple clamp open/close knob

Figure 20: Panoramic positioning

9. Place the temple clamp in contact with the patient's head by means of the appropriate knob (4 - Figure 20).
10. At this point, the patient must move his feet towards the column, making sure to keep his head within the pre-aligned anatomical references. In this way, you will have a greater extension of the spine in the cervical area, improving the darkening of the X-ray in the apical area of the incisors, and avoiding the collision of the tube-head with the patient's shoulders. Check that the Frankfurt plane is still horizontal.


11. Press the key "Patient Entrance" (6) to confirm the parameters. The luminous centring devices switch off and the rotating arm goes to its examination start position. Once alignment has been completed, the following message will be displayed:

" EXAM INIT "

The green LED "Ready of X-rays" lights up to indicate that pressing the X-ray button once more will start the radiation phase.

12. Ask the patient to: keep the lips closed, bring the tongue towards the palate, keep perfectly still and do not look at the rotating arm during the movements.

8.5.4 Making an exposure

NOTE:

When the key "Test" (5) is pressed the Test function is activated.

In this condition, it will be possible to make the unit perform all the movements made during the examination **without emitting X-rays**. Once the cycle is completed, deactivate the "Test" function by pressing key again.

WARNING:

During the emission of X-rays, the protection procedures for the operator and personnel in the area must be in compliance with the local regulations.

In all cases, it is recommended that during the emission of X-rays, only the patient and operator be present in the room. If the operator is not protected by suitable screens, he must stand at least 2 meters away from the emission of the rays (see the Figure 1 and Figure 2).

1. Verify once again that the exposure data are correct. If not, correct them as described in paragraph 8.5.2.2; ensure that the machine's indicator light "Ready for X-rays" will come on, so press the ray button for the entire duration of the exposure, checking the contemporary working of the ray indicator light "X-rays in progress" (if you are within sight of the machine) and the acoustic ray signal. The following message will be displayed first:

" PRE-HEATING "

and then (after 2 seconds), the following message will be displayed:

" X-RAY "

NOTE:

If the machine is in the "Test" mode, the display will show:

" TEST X-RAY NOT ACTIVE "

NOTE:
If message:

" DIGITAL SENSOR IS NOT READY "

is present on the display, it means that the Digital Sensor is not properly inserted or configured.

To reset the message on the Rotograph EVO 3D, press key

NOTE:
The rotation of the arm and the emission of the X-rays will start with a delay of 2 seconds from when the X-ray button is pressed. **As the X-ray button is of the "deadman's brake" type, it is necessary to keep it pressed until the end of the exposure.**

- Once the exposure is completed, the system will rotate back. When it has completed this movement, the display shows the message:

" PATIENT EXIT – Press >0< "

The patient must then be released from the positioning device.

NOTE:
If the examination is made in "Test" mode with the patient already in position, he must not be removed from the temple clamp, to avoid

having to reposition the patient. The "Patient entrance" key (6)

must be pressed until the machine returns to the starting position. This movement can be stopped by pressing the same key.

Now the system is ready to perform a new examination.

- Press the key "Patient Entrance" (6) , the unit will move back

to the starting position showing the message:

" AXIS POSITIONING PLEASE WAIT... "

The Digital Acquisition System will, in the meantime, process the image and display it.

WARNING:

After every examination, clean the chin support, the resting handgrips and the temple clamp thoroughly and change the disposable bite or the bite protective sleeve.

NOTE:

If a new exposure is required, but the waiting time calculated by the adaptive duty cycle has not yet expired, the display will show a message indicating the time remaining before the new examination can be performed:

" TUBE COOLING... PLEASE WAIT: xxx s "

The waiting time allows the anode in the radiogenic tube to cool down.

NOTE:

If, during the exposure, the patient moves, or the machine collides with the patient himself (or with any object), or you realise that the parameters set are not correct, you must release the X-ray button immediately, interrupting the emission of X-rays and the movement of the arm.

If this occurs, the following message will be displayed:

" ERROR: 206 PRESS >0< "

All the motors will switch off, and it will be possible, if necessary, to manually rotate the arm, allowing the patient to come out; **it is recommended that this movement be made with great care in order to prevent damage to the machine.**

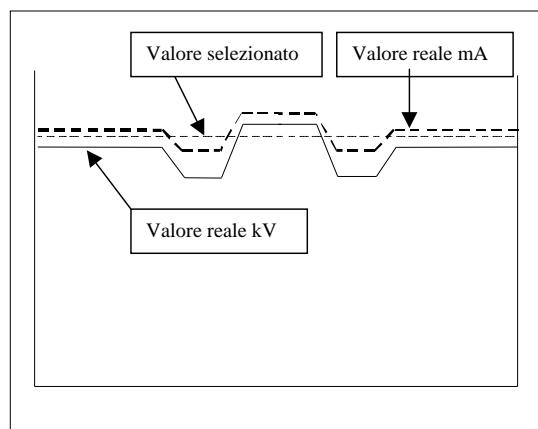
Then press the "Patient Entrance" (6) key and the display will

show:

" MACHINE SETTING – Press >0< "

and then:

" WAIT FOR MACHINE SETTING "


The original position is re-established and the patient must be positioned once again.

NOTE:

During the Panoramic, the value of the expository parameters varies according to a fixed curve, to compensate the variations in absorption by the patient's tissues. In this way, it is possible to obtain a good uniformity of the image contrast. In particular, the chosen value of the kV is lowered in the initial and end sections of the panoramic and increased on the incisors/canine zone.

The tube current varies according to the kV, also if the set value is slightly increased on the initial/end sections. These variations have the effect of compensating the higher absorption of X-ray on the zone of the spinal column. As an example, the variation of the parameters follows the curve below:

The values displayed during the panoramic examination correspond to the ones chosen by the user, while the real value in the various positions of the examination cycle can be different; in any case, the system guarantees that the accuracy of the exposure parameters is within the maximum limits required by international regulations on the safety of medical devices IEC 60601-1. In particular, in accordance with the IEC 60601-2-7, the maximum deviation (inclusive of the correction as shown in the figure and instrumental uncertainty) is within the $\pm 10\%$ for kV and within $\pm 15\%$ for the anode current.

8.6

Temporo-Mandibular Joint Examination

The Temporo-Mandibular Joint examination (TMJ) with open or closed mouth is similar to panoramic; the only difference is that the exposure is performed only on the involved area (the temporo mandibular joint), then it stops, and starts again on the second joint. The operation sequence of the examination is therefore identical to the one described for the panoramic.

The temporo-mandibular joint examination makes use of a projection geometry giving an image of the X-rayed condyle along a direction almost parallel with its major axis, in order to achieve a clear view of its positioning inside the cavity.

This TMJ function enables to obtain 4 different acquisitions on the same image, by performing two rotational movements. The 4 images represent the right and left condyle of the temporo-mandibular arch (TMJ) with closed mouth and open mouth.

Selecting close mouth exam only the external sectors of the image are exposed, while selecting open mouth exam, the exposure occurs on the inner sectors.

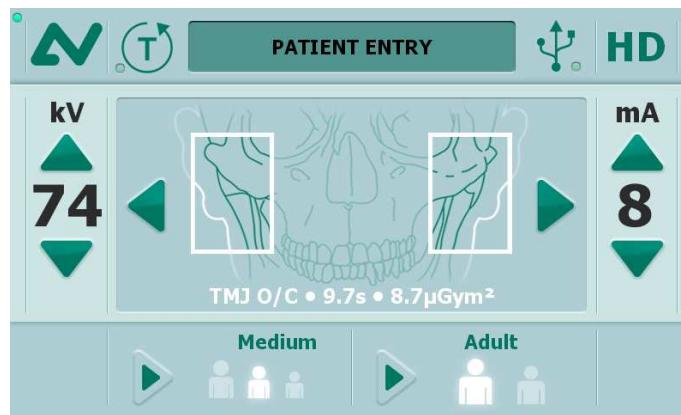
The position of the images couples the images corresponding to the same condyle to help a diagnosis. Figure 21 shows the information related to the single sectors.

RIGHT condyle with closed mouth 1st exposure	RIGHT condyle with open mouth 3rd exposure	LEFT condyle with open mouth 4th exposure	LEFT condyle with closed mouth 2nd exposure
R		L	

Figure 21

NOTE:

During the TMJ examination, the emission of X-rays is intermittent (it is interrupted during the transition phases between the various exposures), but it is necessary to keep the X-ray button pressed for the whole rotation time.

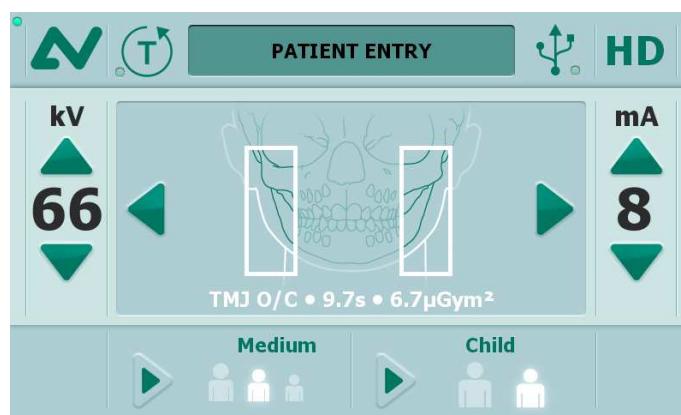

Do not release the X-ray button during the emission interruption if not necessary.

The cooling phase of the tube-head occurs at the end of all 4 exposures. In the CHILD position, exposure start is delayed by a few degrees with respect to the ADULT position.

8.6.1 Device preparation

To select the TMJ exam, press "Exam Mode Selection" area

(11) until the following image is displayed:


The system is positioned in the following configuration:

- ADULT with the lighting up of the corresponding graphic in the button
- MEDIUM SIZE with the lighting up of the corresponding graphic in the button

and the display showing the default exposure parameters (if this is the first TMJ exposure), or the exposure parameters (kV and mA) of the last exposure performed.

Pressing key (8) to change from Adult to Child, the

display will show:

With the preparation of the machine completed, position the chin support (see notes in paragraph 8.3).

NOTE:

Rotograph EVO 3D is based on an arch shape and the temporomandibular joint determined on statistical studies.

This form is taken as "standard" for the dentomaxillofacial complex, also define the position and orientation of the condyles. The patient anatomy can differ significantly from the statistical model; Based on his experience and competence, the user has to judge this variation.

IN ANY CASE, THE X-RAY IMAGE CANNOT BE USED TO PERFORM CALCULATIONS OF DISTANCES, ANGLES ETC.

8.6.2 Anatomic / Manual Exposure

NOTE:

If the previous exam was carried out manually, just press "Exam

Mode Selection" area (11)

to change to Anatomic exposure.

After setting the machine, it is possible to choose between the following two operating modes:

- **ANATOMIC:** with the values of kV and mA programmed on the basis of the type of patient and the size.
- **MANUAL:** with the possibility to vary the kV and mA values already set.

NOTE:

In manual mode, the kV and mA parameters values are displayed in green color.

It is possible to press key (8)

to change from Adult to

Child.

8.6.2.1 Anatomic exposure

Select the type of patient with the **Adult/Child** key (8).

Select the type of build with the **Size** (9) key (*small - medium - large*).

On the basis of the selections made, the display will visualise the kV and mA settings as in the table.

Exposure factors table for TMJ examination (9.7 s)				
Examination	Adult		Child	
TMJ mouth closed/open	kV	mA	kV	mA
Small	70	8	62	8
Medium	74	8	66	8
Large	78	8	70	8

Table 5

The time (9.7 s) refers to the sum of the four exposures (2 closed TMJ mouth exposures and 2 open TMJ mouth exposures).

8.6.2.2 Manual exposure

If the kV and mA combinations of Table 5 are not considered suitable for a specific examination, it will be possible to set new parameters using the manual mode.

To modify the kV or mA values, press any of the increase (3) or decrease (4) arrows of the kV or mA parameters; the values change their color from black to green.

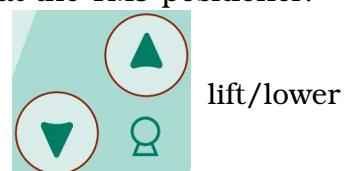
A parameter can be modified by pressing the increase key (3) and the

decrease key (4) of that parameter repeatedly.

The kV value can vary between *60 and 86 kV, with 2 kV steps*.

The value of mA can vary between *6 and 10 mA, with 1 mA steps*.

NOTE:


To change the values rapidly, keep the increase key (3) or the decrease key (4) pressed.

8.6.3 TMJ closed mouth

8.6.3.1 Preparation of the patient

1. Ask the patient to remove all metallic objects located in the area to be X-rayed (necklaces, earrings, glasses, hairpins, movable dental prosthesis, etc.). Ensure that there are no thick garments in the area to be X-rayed (coats, jackets, ties, etc.).
2. Ask the patient to put on the protective apron, or something similar, making sure that it does not interfere with the trajectory of the X-ray beams.
3. Position the patient in a standing position at the TMJ positioner.

With the "Column movement" keys (15/16)

the column until the TMJ positioner is aligned with the patient's nose.

4. Verify that the temple clamp device is in the central position (Figure 14), and if necessary move it using the appropriate control on the top of the support (3 - Figure 22).
5. Place the patient in temple clamp by placing the chin on the surface of the relevant support (Figure 22); the hands should rest on the front handgrips.
6. Set the height of the temple clamp just above the patient's orbital bone.
7. Instruct the patient to close his eyes.

8. Press the key "Centring devices ON" (14) .

Two laser beams illuminate the line of the median sagittal plane and the horizontal line for the reference of the Frankfurt plane (Figure 19).

Using the laser of the midsagittal plane as a reference only, place the patient's head so that the beam falls on the corresponding anatomical reference (Figure 22).

The reference of the Frankfurt plane can be used to make sure the head of the patient is remaining in the same position when examination is taken with either open or closed mouth.

9. Place the temple clamp in contact with the patient's head by means of the appropriate knob (4 - Figure 22).

NOTE:

The laser centring devices remain on for approximately 1 minute;
Shutdown can be anticipated by pressing the "Centring Device On" key (14) or, with alignment complete, by pressing the "Patient entrance" key (6) to begin preparation for exposure.

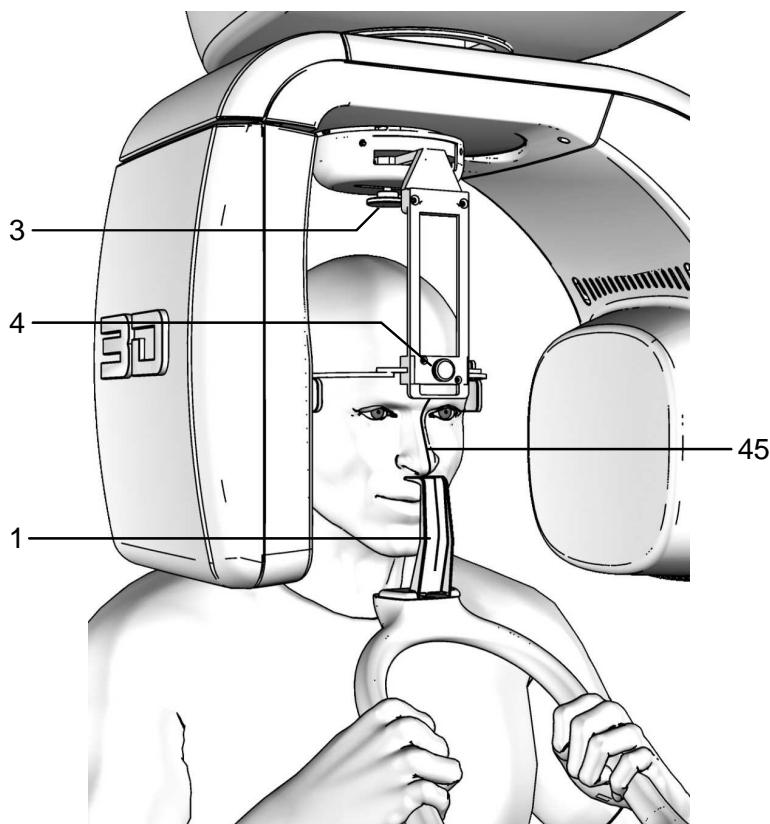


Figure 22 – TMJ closed mouth positioning

Legend of Reference Lines

45 Midsagittal line

Legend positioning devices and patient centring

- 1 TMJ support positioner
- 3 Temple clamp device position control
- 4 Temple clamp open/close knob

10. Press the key "Patient Entrance" (6) to confirm the

parameters. The luminous centring devices switch off and the rotating arm goes to its examination start position.

Once alignment has been completed, the following message will be displayed:

" EXAM INIT "

The green LED "Ready of X-rays" lights up to indicate that pressing the X-ray button once more will start the radiation phase.

11. Ask the patient to: keep the lips closed, keep perfectly still and do not look at the rotating arm during the movements.

8.6.3.2 Carrying out the first exposure (mouth closed)

WARNING:

During the emission of X-rays, the protection procedures for the operator and personnel in the area must be in compliance with the local regulations.

In all cases, it is recommended that during the emission of X-rays, only the patient and operator be present in the room. If the operator is not protected by suitable screens, he must stand at least 2 meters away from the emission of the rays (see the Figure 1 and Figure 2).

NOTE:

If deemed necessary, it is possible to check the interference of the rotation movement with the shoulder of the patient; the Test function can

be activated by pressing the "Test" key (5) . In this condition, it

will be possible to make the unit perform all the movements made during the examination **without emitting X-rays**. The test function of the TMJ closed/open mouth is the same as for the panoramic mode and so there will not be a second rotation corresponding to the open mouth exam. Once the cycle is completed, deactivate the "Test" function by pressing key again.

1. Check once again that the exposure data are correct. If not, correct them as described in paragraph 8.6.2.2. ensure that the machine's indicator light "Ready for X-rays" will come on, so press the ray button for the entire duration of the exposure, checking the contemporary working of the ray indicator light "X-rays in progress" (if you are within sight of the machine) and the acoustic ray signal. The following message will be displayed first:

" PRE-HEATING "

and then (after 2 seconds), the following message will be displayed:

" X-RAY "

NOTE:

If the machine is in the "Test" mode, the display will show:

" TEST X-RAY NOT ACTIVE "

NOTE:

If message:

" DIGITAL SENSOR IS NOT READY "

is present on the display, it means that the Digital Sensor is not properly inserted or configured.

To reset the message on the Rotograph EVO 3D, press key .

NOTE:

The rotation of the arm and the emission of the X-rays will start with a delay of 2 seconds from pressing the X-ray button. **As the X-ray button is of the "deadman's brake" type, it is necessary to keep it pressed until the end of the exposure.**

The X-ray emission to the central part of the dental arch is suspended during the examination phase, so the relative signals (sound and visual) are therefore also suspended.

- Once the exposure is completed, the system will carry out a short return rotation and the following message will be displayed:

" PATIENT EXIT – Press >0< "

It will then be possible to set up the system for the open mouth examination, keeping the patient in position or releasing him from the working area.

- Press the "Patient Entrance" key (6) . The machine will return to the starting position highlighting the message:

" PLEASE WAIT... "

The end of the movement, the display will show the message:

" INSTRUCT PATIENT TO OPEN MOUTH "

8.6.4 TMJ open mouth

8.6.4.1 Preparation of the patient

1. The patient must be prepared following the instructions described in paragraph 8.6.3.1.

The following message will be displayed:

" INSTRUCT PATIENT TO OPEN MOUTH "

2. Press the key "Patient Entrance" (6) to confirm.

The following message will be displayed:

" PATIENT ENTRY "

3. Position the patient again if he has been removed from the centring device (Figure 23). Tell him to open his mouth (helping him to keep in position using appropriate mechanical devices - not supplied - if necessary).
4. Set the height of the temple clamp just above the patient's orbital bone.

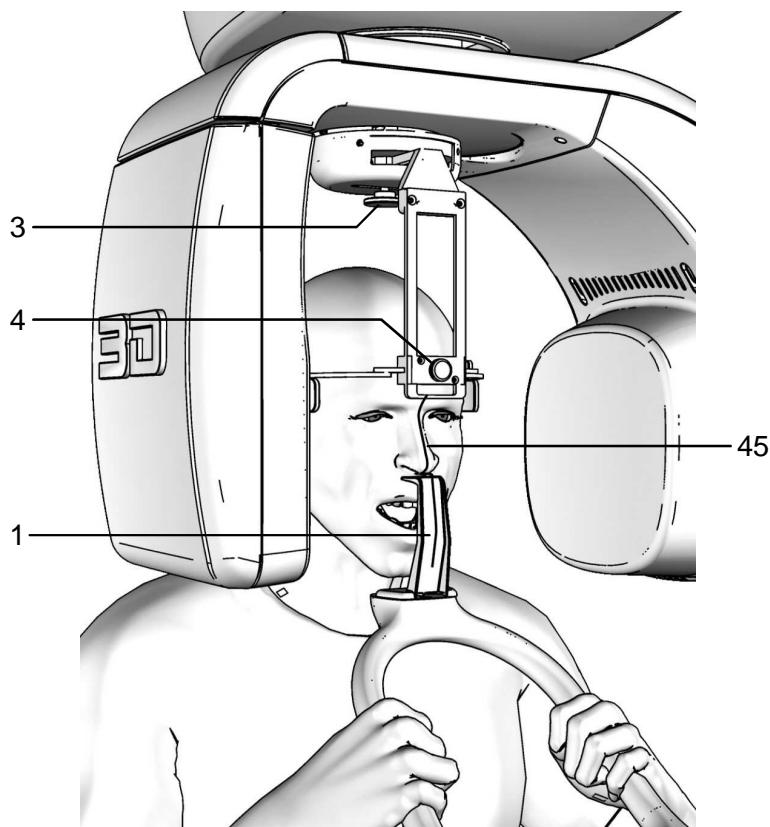


Figure 23 – Open mouth examination positioning

Legend of Reference Lines

45 Midsagittal line

Legend positioning devices and patient centring

- 1 TMJ positioner
- 3 Temple clamp device position control
- 4 Temple clamp open/close knob

5. Instruct the patient to close his eyes.

6. Press the key "Centring devices ON" (14)

Two laser beams will light up the midsagittal plane line and the horizontal line for the Frankfurt plane reference (Figure 19). Using the laser of the midsagittal plane as a reference only, place the patient's head so that the beam falls on the corresponding anatomical reference. The reference of the Frankfurt plane can be used to make sure the head of the patient is remaining in the same position when examination is taken with either open or closed mouth.

NOTE:

The laser centring devices remain on for approximately 1 minute; shutdown can be anticipated by pressing the "Centring Device On" key (14) or, with alignment complete, by pressing the "Patient entrance" key

- (6) to begin preparation for exposure.

7. Place the temple clamp in contact with the patient's head by means of the appropriate knob (4 - Figure 23).

8. Press the key "Patient Entrance" (6) to confirm the

parameters. The luminous centring devices switch off and the rotating arm goes to its examination start position.

Once alignment has been completed, the following message will be displayed:

" EXAM INIT "

The green LED "Ready of X-rays" lights up to indicate that pressing the X-ray button once more will start the radiation phase.

9. **Ask the patient to: remain perfectly still and not to look at the rotation arm during the movement.**

8.6.4.2 Carrying out the second exposure (mouth open)

WARNING:

During the emission of X-rays, the protection procedures for the operator and personnel in the area must be in compliance with the local regulations.

In all cases, it is recommended that during the emission of X-rays, only the patient and operator be present in the room. If the operator is not protected by suitable screens, he must stand at least 2 meters away from the emission of the rays (see the Figure 1 and Figure 2).

WARNING:

Using the laser centring devices, check that the system is still aligned with the patient's sagittal medial plane.

1. Press the "Patient Entrance" key (6) . The display will show:

" EXAM INIT "

Check again that the exposure data are correct (see paragraph 8.6.2).

NOTE:

The Adult/Child and Size *small - medium - large* selection keys are deactivated. The exposure parameters can be changed as described in paragraph 8.6.2.

Press the X-ray button for the entire duration of the exposure, checking the concurrent working of the ray indicator light "X-rays in progress" (if you are within sight of the machine) and the acoustic ray signal. The following message will be displayed first:

" PRE-HEATING "

and then (after 2 seconds), the following message will be displayed:

" X-RAY "

NOTE:

The rotation of the arm and the emission of the X-rays will start with a delay of 2 seconds from when the X-ray button is pressed. **As the X-ray button is of the "deadman's brake" type, it is necessary to keep it pressed until the end of the exposure.**

During the examination, the emission of rays in correspondence with the central part of the dental arch is suspended; the relative signals (audible and visual) are also suspended.

2. Once the exposure is completed, the system will rotate back. When it has completed this movement, the display shows the message:

" PATIENT EXIT – Press >0< "

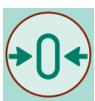
and it will be necessary to free the patient from the positioning device.

3. Press the key "Patient Entrance" (6) . The machine will reposition itself back to the starting position displaying the message:

" AXIS POSITIONING PLEASE WAIT... "

WARNING:

Clean the chin support, the resting handgrips and the temple clamp thoroughly after each examination.


NOTE:

If, during the exposure, the patient moves, or the machine collides with the patient himself (or with any object), or you realise that the parameters set are not correct, you must release the X-ray button immediately, interrupting the emission of X-rays and the movement of the arm.

If this occurs, the following message will be displayed:

" ERROR: 206 PRESS >0< "

All the motors will switch off, and it will be possible, if necessary, to manually rotate the arm, allowing the patient to come out; **it is recommended that this movement be made with great care in order to prevent damage to the machine.**

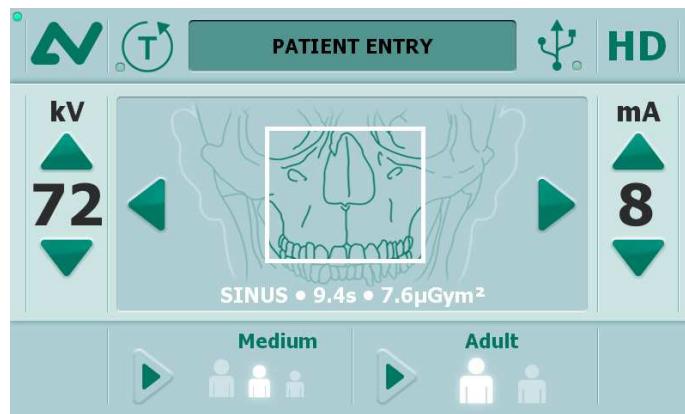
Then press the "Patient Entrance" (6) key and the display will show:

" MACHINE SETTING – Press >0< "

and then:

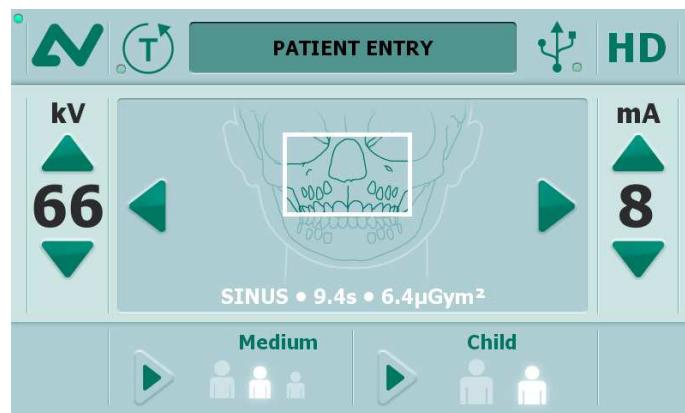
" WAIT FOR MACHINE SETTING "

The original position is re-established and the patient must be positioned once again.


NOTE:

If the open mouth exposure is not completed, the closed mouth exposure must be repeated or the four complete pictures will not appear.

8.7 SINUS examination


To select the SINUS exam, press the "Exam Mode Selection" area

(11) until the following image is displayed:

During the examination, one single rotation of the rotating arm is to be expected, with the X-rays emission limited to the interested area.

Pressing key (8) to change from Adult to Child, the display will show:

With the preparation of the machine completed, position the chin support (see notes in paragraph 8.3).

8.7.1 Anatomic / Manual Exposure

NOTE:

If the previous exam was carried out manually, just press the key "Exam

Mode Selection" area (11)

to change to Anatomic exposure.

After setting the machine, it is possible to choose between the following two operating modes:

- **ANATOMIC:** with the values of kV and mA programmed on the basis of the type of patient and the size.
- **MANUAL:** with the possibility to vary the kV and mA values already set.

NOTE:

In manual mode, the kV and mA parameters values are displayed in green color.

It is possible to press key (8)

to change from Adult to

Child.

8.7.1.1 Anatomic exposure

Select the type of patient with the **Adult/Child** key (8).

Select the type of build with the **Size** (9) key (*small - medium - large*).

On the basis of the selections made, the display will visualise the kV and mA settings as in the table.

Exposure factors table for SINUS exams (9.4 s)				
	Adult		Child	
	kV	mA	kV	mA
Small	68	8	64	8
Medium	72	8	66	8
Large	74	8	68	8

Table 6

8.7.1.2 Manual exposure

If the kV and mA combinations of Table 6 are not considered suitable for a specific examination, it will be possible to set new parameters using the manual mode.

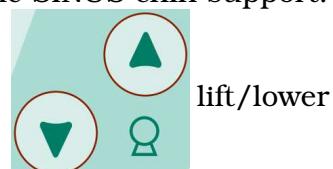
To modify the kV or mA values, press any of the increase (3) or decrease (4) arrows of the kV or mA parameters; the values change their color from black to green.

A parameter can be modified by pressing the increase key (3) and the

decrease key (4) of that parameter repeatedly.

The kV value can vary between *60 and 86 kV, with 2 kV steps*.

The value of mA can vary between *6 and 10 mA, with 1 mA steps*.


NOTE:

To change the values rapidly, keep the increase key (3) or the decrease key (4) pressed.

8.7.2 Preparation of the patient

1. Ask the patient to remove all metallic objects located in the area to be X-rayed (necklaces, earrings, glasses, hairpins, movable dental prosthesis, etc.). Ensure that there are no thick garments in the area to be X-rayed (coats, jackets, ties, etc.).
2. Ask the patient to put on the protective apron, or something similar, making sure that it does not interfere with the trajectory of the X-ray beams.
3. Position the patient in a standing position to the SINUS chin support.

With the "Column movement" keys (15/16)

the column until the chin support is aligned with the patient's chin.

4. Verify that the temple clamp device is in the central position (Figure 14), and if necessary move it using the appropriate control on the top of the support (3 - Figure 24).
5. Place the patient in the temple clamp (Figure 24) by placing the chin on the surface of the relevant support; the hands should rest on the front handgrips. Ensure that the patient rests his chin on the chin support for SINUS.
6. Set the height of the temple clamp just above the patient's orbital bone.
7. Instruct the patient to close his eyes.

8. Press the key "Centring devices ON" (14) .

Two laser beams illuminate the line of the median sagittal plane and the horizontal line for the reference of the Frankfurt plane (Figure 19).

Position the patient's head in such a way as to ensure that the luminous beams fall in correspondence with the respective anatomical references.

The luminous beam of the Frankfurt plane can be adjusted according to the patient's height; this adjustment is achieved by adjusting the laser block on the side of the mirror.

NOTE:

The laser centring devices remain on for approximately 1 minute; shutdown can be anticipated by pressing the "Centring Device On" key (14) or, with alignment complete, by pressing the "Patient entrance" key

(6) to begin preparation for exposure.

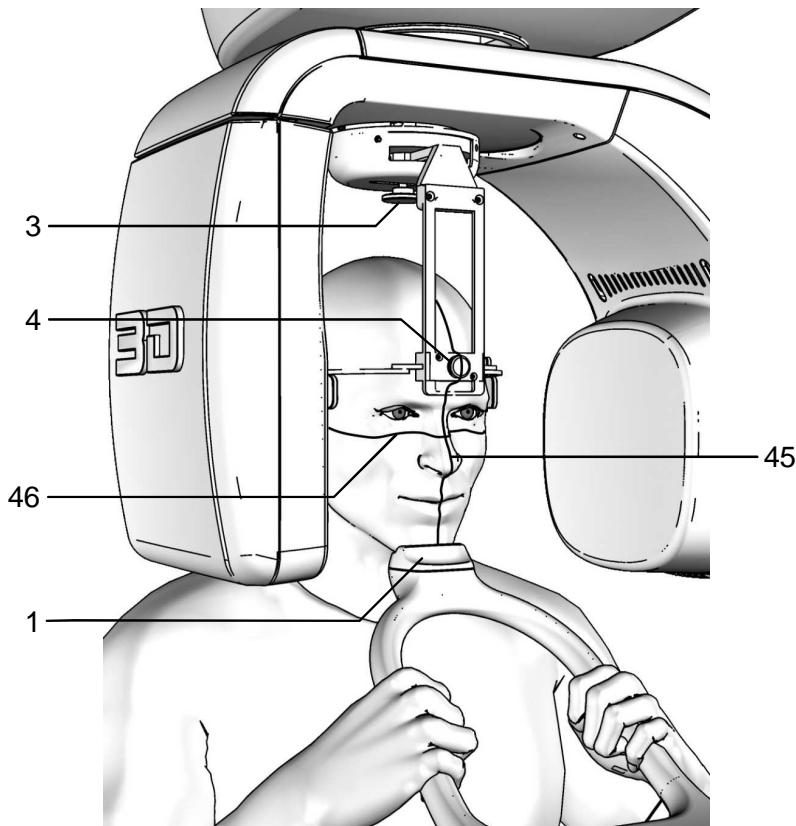


Figure 24 - SINUS positioning

Legend of Reference Lines

45 Midsagittal line
46 Frankfurt plane line

Legend positioning devices and patient centring

1 SINUS support
3 Temple clamp device position control
4 Temple clamp open/close knob

9. Place the temple clamp in contact with the patient's head by means of the appropriate knob (4 - Figure 24).
10. At this point, the patient must move his feet towards the column, making sure to keep his head within the pre-aligned anatomical references. By doing so a greater distension of the spinal column is achieved, avoiding collisions with the tube-head with the patient's shoulders. Check that the Frankfurt plane is still horizontal.

11. Press the key "Patient Entrance" (6) to confirm the

parameters. The luminous centring devices switch off and the rotating arm goes to its examination start position. Once alignment has been completed, the following message will be displayed:

" EXAM INIT "

The green LED "Ready of X-rays" lights up to indicate that pressing the X-ray button once more will start the radiation phase.

12. **Ask the patient to: keep the lips closed, keep perfectly still and do not look at the rotating arm during the movements.**

8.7.3 Making an exposure

WARNING:

During the emission of X-rays, the protection procedures for the operator and personnel in the area must be in compliance with the local regulations.

In all cases, it is recommended that during the emission of X-rays, only the patient and operator be present in the room. If the operator is not protected by suitable screens, he must stand at least 2 meters away from the emission of the rays (see the Figure 1 and Figure 2).

NOTE:

Before performing a lateral Sinus examination, because of the specific trajectory described by the rotating arm, it is recommended to check for possible mechanical interference with the patient's shoulder during the rotation.

by pressing the key "Test" (5) , to activate the Test function. In

this condition, it will be possible to make the unit perform all the movements made during the examination **without emitting X-rays**.

Once the cycle is completed, deactivate the "Test" function by pressing key again.

4. Verify once again that the exposure data are correct. If not, correct them as described in paragraph 8.5.2.2; ensure that the machine's indicator light "Ready for X-rays" will come on, so press the ray button for the entire duration of the exposure, checking the contemporary working of the ray indicator light "X-rays in progress" (if you are within sight of the machine) and the acoustic ray signal. The following message will be displayed first:

" PRE-HEATING "

and then (after 2 seconds), the following message will be displayed:

" X-RAY "

NOTE:

If the machine is in the "Test" mode, the display will show:

" TEST X-RAY NOT ACTIVE "

NOTE:
If message:

" DIGITAL SENSOR IS NOT READY "

is present on the display, it means that the Digital Sensor is not properly inserted or configured.

To reset the message on the Rotograph EVO 3D, press key .

NOTE:
The rotation of the arm and the emission of the X-rays will start with a delay of 2 seconds from when the X-ray button is pressed. **As the X-ray button is of the "deadman's brake" type, it is necessary to keep it pressed until the end of the exposure.**

During the examination, the emission of rays in correspondence with the central part of the dental arch is suspended; the relative signals (audible and visual) are also suspended.

- Once the exposure is completed, the system will rotate back. When it has completed this movement, the display shows the message:

" PATIENT EXIT – Press >0< "

and it will be necessary to free the patient from the positioning device.

- Press the key "Patient Entrance" (6) . The machine will reposition itself back to the starting position displaying the message:

" AXIS POSITIONING PLEASE WAIT... "

At the end, the following message will be displayed:

" PATIENT ENTRY "

A new exposure can now be made.

WARNING:
Clean the chin support, the resting handgrips and the temple clamp thoroughly after each examination.

NOTE:

If a new exposure is required, but the waiting time calculated by the adaptive duty cycle has not yet expired, the display will show a message indicating the time remaining before the new examination can be performed:

" TUBE COOLING... PLEASE WAIT: xxx s "

The waiting time allows the anode in the radiogenic tube to cool down.

NOTE:

If, during the exposure, the patient moves, or the machine collides with the patient himself (or with any object), or you realise that the parameters set are not correct, you must release the X-ray button immediately, interrupting the emission of X-rays and the movement of the arm.

If this occurs, the following message will be displayed:

" ERROR: 206 PRESS >0< "

All the motors will switch off, and it will be possible, if necessary, to manually rotate the arm, allowing the patient to come out; **It is recommended that this movement be made with great care in order to prevent damage to the machine.**

Then press the "Patient Entrance" (6) key and the display will show:

" MACHINE SETTING – Press >0< "

and then:

" WAIT FOR MACHINE SETTING "

The original position is re-established and the patient must be positioned once again.

8.8 Volumetric or 3D exams

The 3D or volumetric examinations have a continuous rotation of the tube-head support arm (X-ray generator) and the sensor holder. The total angle of rotation varies according to the examination mode selected.

After the initial acceleration, the rotation is at a constant speed, while the centre of rotation remains fixed in the position identified from the exam, so that the area of interest is within the reconstructed volume.

The emission of X-rays only occurs during the constant rotation speed of the rotating arm, and occurs in pulsed mode, at each degree of rotation.

The volumetric images obtained allow a clear view of the entire area of interest, and also, by using the image acquisition and processing program, images along three axes perpendicular to each can be obtained and selected by the operator.

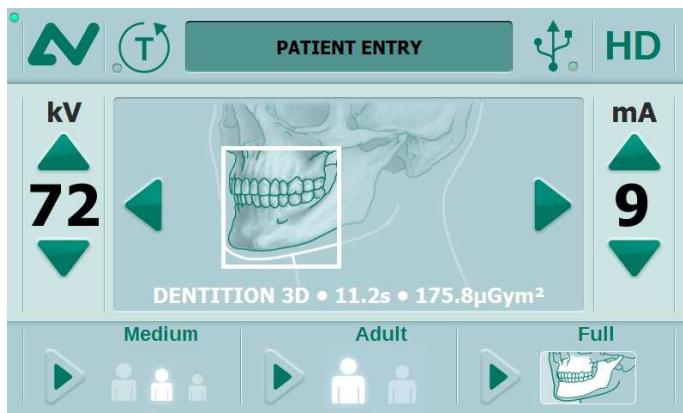
The centring of the patient for 3D Dentition and 3D Sinus examinations is aided by two linear reference beams; the corresponding anatomical planes of the patient must be aligned with these beams.

NOTE:

The Partial Volume selection is only allowed in the 3D Dentition exam mode and it isn't allowed in the 3D TMJ left, 3D TMJ right or 3D Sinus exam mode.

8.9 **3D Dentition exam**

The 3D examination of the dentition allows the physician/dentist to have an overview of the entire, maxillary or mandibular dentition of the patient. This mode is very useful when you need to plan more than one system, because a global view is produced with a single exposure and, taking advantage of the opportunities provided by the image acquisition and processing system, different areas of interest can be selected.


The "Partial Volume selection" drives an additional collimator that allows to irradiate the patient only on the needed dental arch (maxillary or mandibular).

Furthermore, in "Partial Volume selection", if the PC graphics card has at least 2Gb of memory, the eXtra Definition mode is available.

8.9.1 Preparation of the device

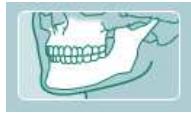
To select the 3D Dentition exam, press the "Exam Mode Selection" area

(11) until the following image is displayed:

The system is positioned in the following configuration:

- ADULT with the lighting up of the corresponding graphic in the button
- MEDIUM SIZE with the lighting up of the corresponding graphic in the button
- FULL (VOLUME) with the display of corresponding graphic in the button

and the default settings are displayed if this is the first 3D Dentition exposure to be performed or the radiological parameters used in the last examination.


Once the settings have been completed, the relative chin support must be placed in position (see the operative notes in paragraph 8.3).

The "Exam Mode Selection" area (11) enables the selection of specific submodes, selectable by means of the keys "Arrow right" (13) and "Arrow left" (12), enabling the sliding in one direction or another.

The following choices are available in the volumetric exam mode:
3D Dentition -> 3D TMJ Left -> 3D TMJ Right -> 3D Sinus ->
3D Dentition.

This selection is cyclic, so pressing the button repeatedly will change the selected mode.

Press key (10) to modify the portion of the volume from Full to Maxillary or Mandibular.

In Maxillary or Mandibular mode, you can pass from High Definition mode (indicated by "HD") to eXtra Definition mode (indicated by "XD"), by pressing key (7) and viceversa.

8.9.2 Anatomic / Manual Exposure

NOTE:

If the previous exam was carried out manually, just press the "Exam

Mode Selection" area (11)

to change to Anatomic exposure.

After setting the machine, it is possible to choose between the following two operating modes:

- **ANATOMIC:** with the kV, mA and t values programmed on the basis of the type of patient and the size.
- **MANUAL:** with the possibility of altering the pre-set kV, mA and times.

NOTE:

In manual condition, the kV and mA parameters values are displayed in green color.

It is possible to press key (8)

to change from Adult to

Child.

8.9.2.1 Anatomic exposure

Select the type of patient with the **Adult/Child** key (8).

Select the type of build with the **Size** (9) key (*small - medium - large*).

On the basis of these selections, the display will visualise the kV and mA settings as in the table.

3D Dentition mode - High Definition mode - exposure values table (11.2 s)				
	Adult		Child	
	kV	mA	kV	mA
Small	78	8	64	9
Medium	80	8	66	9
Large	82	8	68	9

Table 7

3D Dentition mode - eXtra Definition mode - exposure values table (11.2 s)				
	Adult		Child	
	kV	mA	kV	mA
Small	82	9	64	10
Medium	84	10	66	10
Large	86	10	68	10

Table 8

The exposure time indicated (11.2 seconds) is relative to the sum of 400 X-ray pulses of 28 ms each that make up the exam.

WARNING:

The Partial Volume selection does not effect the kV and mA values, but it effect on the irradiated dose to the patient (see the technical characteristics paragraph 6.1).

8.9.2.2 Manual exposure

If the kV and mA combinations of the table Table 7 are not considered suitable for a specific examination, it will be possible to set new parameters using the manual mode.

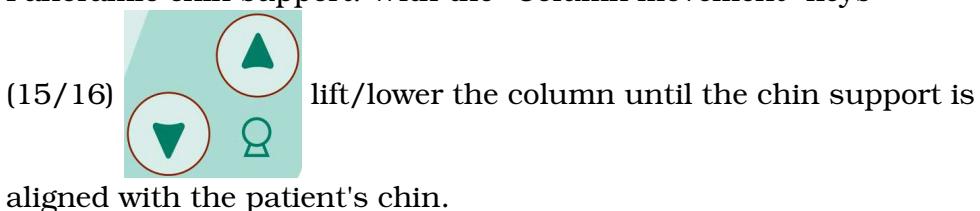
To modify the kV or mA values, press any of the increase (3) or decrease (4) arrows of the kV or mA parameters; the values change their color from black to green.

A parameter can be modified by pressing the increase key (3) and the

decrease key (4) of that parameter repeatedly.

The kV value can vary between *60 and 86 kV, with 2 kV steps*.

The value of mA can vary between *6 and 10 mA, with 1 mA steps*.



NOTE:

To change the values rapidly, keep the increase key (3) or the decrease key (4) pressed.

8.9.3 Preparation of the patient

1. Ask the patient to remove all metallic objects located in the area to be X-rayed (necklaces, earrings, glasses, hairpins, movable dental prosthesis, etc.). Ensure that there are no thick garments in the area to be X-rayed (coats, jackets, ties, etc.).
2. Ask the patient to put on the protective apron, or something similar, making sure that it does not interfere with the trajectory of the X-ray beams.
3. Position the patient in a standing position to the Edentulous Panoramic chin support. With the "Column movement" keys

NOTE:

Depending on the examination application, it may be suggested the use of the chin rest for standard panoramic including centering bite (paragraph 8.3) to separate upper and lower arch.

4. Verify that the temple clamp device is in the central position (Figure 14), and if necessary move it using the appropriate control on the top of the support (3 - Figure 25).
5. Make sure that the chin support used is that for edentulous patients (paragraph 8.3).
6. Place the patient in the temple clamp (Figure 25) by placing the chin on the surface of the relevant support; the hands should rest on the front handgrips.
7. Set the height of the temple clamp just above the patient's orbital bone.
8. Instruct the patient to close his eyes.

9. Press the key "Centring devices ON" (14) .

Two laser beams will illuminate; align the midsagittal and ala-tragus planes (Figure 19) of the patient with these beams.

The horizontal beam can be adjusted, depending on the height of the patient, by acting on the laser block on the side of the mirror.

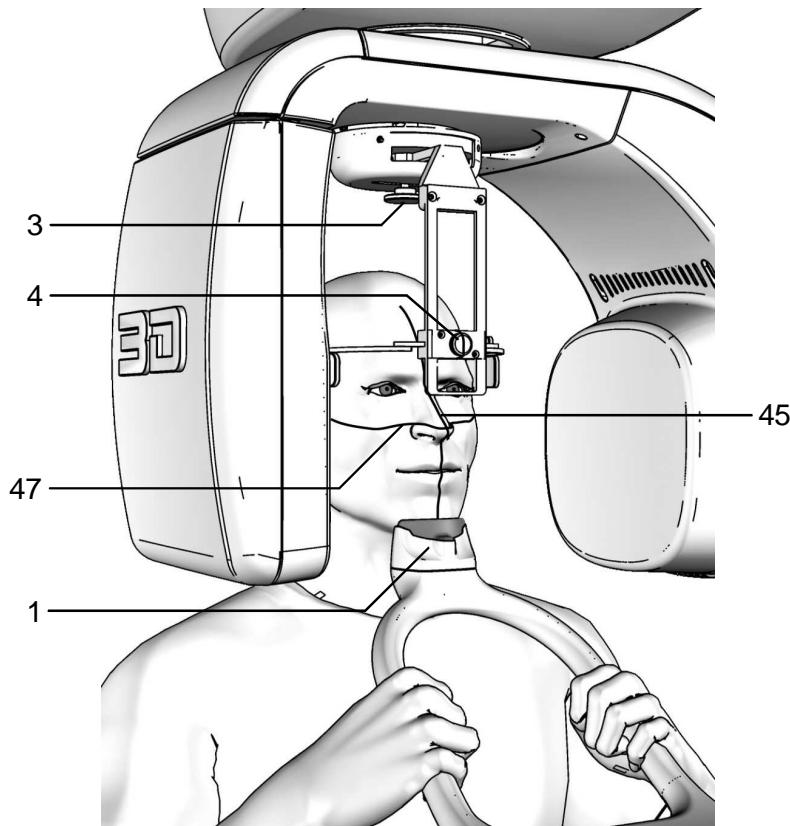


Figure 25 - 3D Dentition positioning

Legend of Reference Lines

45 Midsagittal line
47 Ala-tragus line

Legend positioning devices and patient centring

2 Edentulous chin support
3 Temple clamp device position control
4 Temple clamp open/close knob

NOTE:

The laser centring devices remain on for approximately 1 minute; shutdown can be anticipated by pressing the "Centring Device On" key (14) or, with alignment complete, by pressing the "Patient entrance" key

(6) to begin preparation for exposure.

10. Place the temple clamp in contact with the patient's head by means of the appropriate knob (4 - Figure 25). In order to help the patient maintain the correct posture, use the head strip on the temple clamp passing it behind the nape of the patient's neck; check that, during this phase, the patient has not changed position.
11. At this point, the patient must move his feet towards the column, making sure to keep his head within the pre-aligned anatomical references. In this way, you will have a greater extension of the spine in the cervical area, improving the darkening of the X-ray in the apical area of the incisors, and avoiding the collision of the tube-head with the patient's shoulders. Check that the Frankfurt plane is still horizontal.

12. Press the key "Patient Entrance" (6) to confirm the

parameters. The luminous centring devices switch off and the rotating arm goes to its examination start position. Once alignment has been completed, the following message will be displayed:

" EXAM INIT "

The green LED "Ready of X-rays" lights up to indicate that pressing the X-ray button once more will start the radiation phase.

13. Ask the patient to: keep the lips closed, bring the tongue towards the palate, keep perfectly still and do not look at the rotating arm during the movements.

NOTE:

When the equipment is set to 80mmx80mm FOV (setting required in Canada) the patient positioning in the 3D examination has to be done more carefully due to the smaller field of view.

Before positioning the patient it is recommended to evaluate his anatomy and especially in the case he has a large dentition he has to be placed in such a way the region of interest will fall in the Field Of View.

In general it is suggested to use the standard panoramic chin support including centering bite (see paragraph 8.3 and Figure 20) to position the patient in the 3D examination. This reference is enough accurate to see the complete dentition but the tooth number 8 can be very close to the FOV limits or partially outside.

If the exam has to be taken on the tooth number 8, to be sure the tooth of interest is inside the volume it is suggested to use the edentulous chin support and position the patient head more towards the column of the unit respect a normal panoramic exam.

8.9.4 Making an exposure

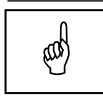
NOTE:

When the key "Test" (5) is pressed the Test function is activated.

In this condition, it will be possible to make the unit perform all the movements made during the examination **without emitting X-rays**. Once the cycle is completed, deactivate the "Test" function by pressing key again.

WARNING:

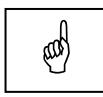
During the emission of X-rays, the protection procedures for the operator and personnel in the area must be in compliance with the local regulations.


In all cases, it is recommended that during the emission of X-rays, only the patient and operator be present in the room. If the operator is not protected by suitable screens, he must stand at least 2 meters away from the emission of the rays (see the Figure 1 and Figure 2).

1. Verify once again that the exposure data are correct. If not, correct them as described in paragraph 8.9.2.2; ensure that the machine's indicator light "Ready for X-rays" will come on, so press the ray button for the entire duration of the exposure, checking the contemporary working of the ray indicator light "X-rays in progress" (if you are within sight of the machine) and the acoustic ray signal. The following message will be displayed first:

" PRE-HEATING "

and then (after 2 seconds), the following message will be displayed:


" X-RAY "

NOTE:

Emissions are pulse in the volumetric mode; the acoustic signal isn't continuous either.

Keep the X-ray key pressed until the exam is complete.

NOTE:

If the machine is in the "Test" mode, the display will show:

" TEST X-RAY NOT ACTIVE "

NOTE:

If message:

" DIGITAL SENSOR IS NOT READY "

is present on the display, it means that the Digital Sensor is not properly inserted or configured.

To reset the message on the Rotograph EVO 3D, press key .

NOTE:

The rotation of the arm and the emission of the X-rays will start with a delay of 2 seconds from when the X-ray button is pressed. **As the X-ray button is of the "deadman's brake" type, it is necessary to keep it pressed until the end of the exposure.**

- Once the exposure is completed, the system will rotate back. When it has completed this movement, the display shows the message:

" PATIENT EXIT – Press >0<"

The patient must then be released from the positioning device.

NOTE:

If the examination is made in "Test" mode with the patient already in position, he must not be removed from the temple clamp, to avoid

having to reposition the patient. The "Patient entrance" key (6)

must be pressed until the machine returns to the starting position. This movement can be stopped by pressing the same key.

Now the system is ready to perform a new examination.

- Press the key "Patient Entrance" (6) , the unit will move back

to the starting position showing the message:

" AXIS POSITIONING PLEASE WAIT... "

The Digital Acquisition System will, in the meantime, process the image and display it.

WARNING:

Clean the chin support, the resting handgrips and the temple clamp thoroughly and change the head strip after every examination.

NOTE:

If a new exposure is required, but the waiting time calculated by the adaptive duty cycle has not yet expired, the display will show a message indicating the time remaining before the new examination can be performed:

" TUBE COOLING... PLEASE WAIT: xxx s "

The waiting time allows the anode in the radiogenic tube to cool down.

NOTE:

If, during the exposure, the patient moves, or the machine collides with the patient himself (or with any object), or you realise that the parameters set are not correct, you must release the X-ray button immediately, interrupting the emission of X-rays and the movement of the arm.

If this occurs, the following message will be displayed:

" ERROR: 206 PRESS >0< "

All the motors will switch off, and it will be possible, if necessary, to manually rotate the arm, allowing the patient to come out; **It is recommended that this movement be made with great care in order to prevent damage to the machine.**

Then press the "Patient Entrance" (6) key and the display will show:

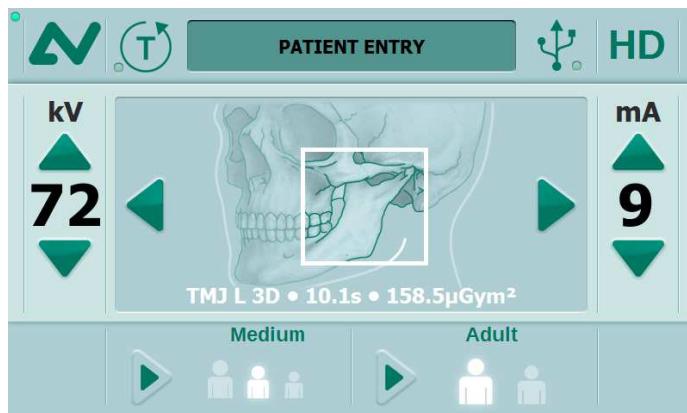
" MACHINE SETTING – Press >0< "

and then:

" WAIT FOR MACHINE SETTING "

The original position is re-established and the patient must be positioned once again.

8.10 Left TMJ in 3D mode


The Left TMJ examination in 3D mode allows a clear vision of the left condyle and how it positions itself inside the fossa. The examination is normally conducted in a rest position, i.e. with the mouth closed.

Using the functions of the image acquisition and management of program, planes of interest can be selected and therefore the position of the condyle analysed at various points and along three perpendicular axes in order to get an overview of the joint's anatomy.

8.10.1 Preparation of the device

To select the 3D TMJ Left exam, press the "Exam Mode Selection" area

(11) until the following image is displayed:

The system is positioned in the following configuration:

- **ADULT** with the lighting up of the corresponding graphic in the button
- **MEDIUM SIZE** with the lighting up of the corresponding graphic in the button

and the default settings are displayed if this is the first 3D TMJ exposure to be performed or the radiological parameters used in the last examination.

Once the settings have been completed, the relative chin support must be placed in position (see the operative notes in paragraph 8.3).

Check that the temple clamp device is in the 3D TMJ Left position (patient right side - Figure 14); if necessary move it into the correct position by means of the knob (3 - Figure 26).

8.10.2 Anatomic / Manual Exposure

NOTE:

If the previous exam was carried out manually, just press the "Exam

Mode Selection" area (11)

to change to Anatomic exposure.

After setting the machine, it is possible to choose between the following two operating modes:

- **ANATOMIC:** with the kV, mA and t values programmed on the basis of the type of patient and the size.
- **MANUAL:** with the possibility of altering the pre-set kV, mA and times.

NOTE:

In manual mode, the kV and mA parameters values are displayed in green color.

It is possible to press key (8)

to change from Adult to

Child.

8.10.2.1 Anatomic exposure

Select the type of patient with the **Adult/Child** key (8).

Select the type of build with the **Size** (9) key (*small - medium - large*).

On the basis of these selections, the display will visualise the kV and mA settings as in the table.

3D TMJ Left mode exposure values table (10.1 s)				
	Adult		Child	
	kV	mA	kV	mA
Small	80	8	64	9
Medium	82	9	66	9
Large	84	10	68	9

Table 9

The exposure time indicated (10.1 seconds) is relative to the sum of 360 X-ray pulses of 28 ms each that make up the exam.

8.10.2.2 Manual exposure

If the kV and mA combinations of the table Table 9 are not considered suitable for a specific examination, it will be possible to set new parameters using the manual mode.

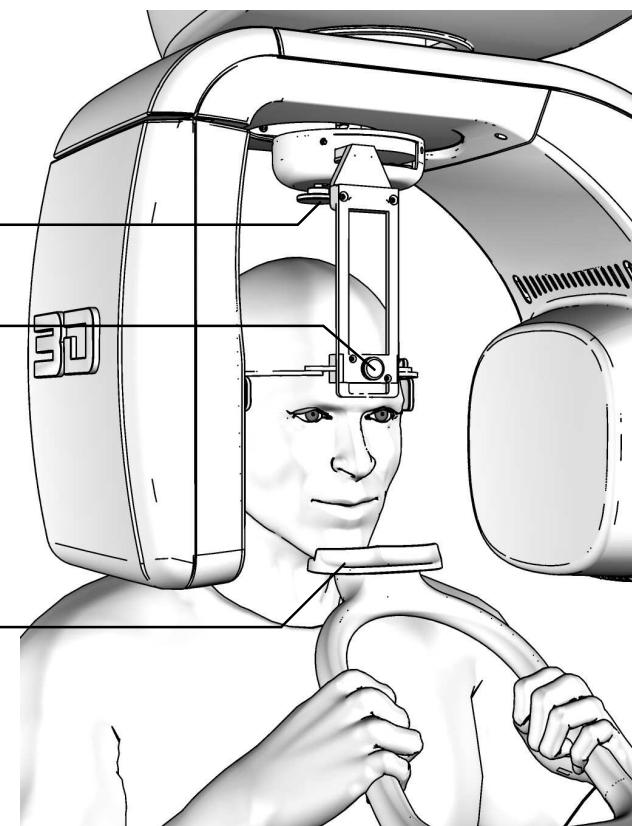
To modify the kV or mA values, press any of the increase (3) or decrease (4) arrows of the kV or mA parameters; the values change their color from black to green.

A parameter can be modified by pressing the increase key (3) and the

decrease key (4) of that parameter repeatedly.

The kV value can vary between *60 and 86 kV, with 2 kV steps*.

The value of mA can vary between *6 and 10 mA, with 1 mA steps*.



NOTE:

To change the values rapidly, keep the increase key (3) or the decrease key (4) pressed.

8.10.3 Preparation of the patient

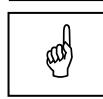
1. Ask the patient to remove all metallic objects located in the area to be X-rayed (necklaces, earrings, glasses, hairpins, movable dental prosthesis, etc.). Ensure that there are no thick garments in the area to be X-rayed (coats, jackets, ties, etc.).
2. Ask the patient to put on the protective apron, or something similar, making sure that it does not interfere with the trajectory of the X-ray beams.
3. Position the patient upright to the 3D TMJ chin support. With the keys "Column movement" (15/16) lift/lower the column until the chin support is aligned with the patient's chin.
4. Place the patient in the temple clamp (Figure 26) by placing the chin on the surface of the relevant support; the hands should rest on the front handgrips; the patient must rest his chin against the reference on the chin support, using the right side (patient entrance view) of the support itself.

Figure 26 - 3D TMJ Left positioning

Legend positioning devices and patient centring

- 1 3D TMJ chin support
- 3 Temple clamp device position control
- 4 Temple clamp open/close knob

5. Set the height of the temple clamp just above the patient's orbital bone.



NOTE:

In the 3D TMJ exam, the laser centring devices are not active.

6. Place the temple clamp in contact with the patient's head by means of the appropriate knob (4 - Figure 26). In order to help the patient maintain the correct posture, use the head strip on the temple clamp passing it behind the nape of the patient's neck; check that, during this phase, the patient has not changed position.
7. **Ask the patient to: keep the lips closed, bring the tongue towards the palate, keep perfectly still and do not look at the rotating arm during the movements.**

8.10.4 Making an exposure

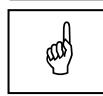
NOTE:

When the key "Test" (5) is pressed the Test function is activated.

In this condition, it will be possible to make the unit perform all the movements made during the examination **without emitting X-rays**. Once the cycle is completed, deactivate the "Test" function by pressing key again.

WARNING:

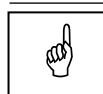
During the emission of X-rays, the protection procedures for the operator and personnel in the area must be in compliance with the local regulations.


In all cases, it is recommended that during the emission of X-rays, only the patient and operator be present in the room. If the operator is not protected by suitable screens, he must stand at least 2 meters away from the emission of the rays (see the Figure 1 and Figure 2).

1. Verify once again that the exposure data are correct. If not, correct them as described in paragraph 8.10.2.2; ensure that the machine's indicator light "Ready for X-rays" will come on, so press the ray button for the entire duration of the exposure, checking the contemporary working of the ray indicator light "X-rays in progress" (if you are within sight of the machine) and the acoustic ray signal. The following message will be displayed first:

" PRE-HEATING "

and then (after 2 seconds), the following message will be displayed:


" X-RAY "

NOTE:

Emissions are pulse in the volumetric mode; the acoustic signal isn't continuous either.

Keep the X-ray key pressed until the exam is complete.

NOTE:

If the machine is in the "Test" mode, the display will show:

" TEST X-RAY NOT ACTIVE "

NOTE:

If message:

" DIGITAL SENSOR IS NOT READY "

is present on the display, it means that the Digital Sensor is not properly inserted or configured.

To reset the message on the Rotograph EVO 3D, press key .

NOTE:

The rotation of the arm and the emission of the X-rays will start with a delay of 2 seconds from when the X-ray button is pressed. **As the X-ray button is of the "deadman's brake" type, it is necessary to keep it pressed until the end of the exposure.**

- Once the exposure is completed, the system will rotate back. When it has completed this movement, the display shows the message:

" PATIENT EXIT – Press >0< "

and it will be necessary to free the patient from the positioning device.

NOTE:

If the examination is made in "Test" mode with the patient already in position, he must not be removed from the temple clamp, to avoid

having to reposition the patient. The "Patient entrance" key (6)

must be pressed until the machine returns to the starting position. This movement can be stopped by pressing the same key.

Now the system is ready to perform a new examination.

- Press the key "Patient Entrance" (6)

" AXIS POSITIONING PLEASE WAIT... "

The Digital Acquisition System will, in the meantime, process the image and display it.

WARNING:

Clean the chin support, the resting handgrips and the temple clamp thoroughly and change the head strip after every examination.

NOTE:

If a new exposure is required, but the waiting time calculated by the adaptive duty cycle has not yet expired, the display will show a message indicating the time remaining before the new examination can be performed:

" TUBE COOLING... PLEASE WAIT: xxx s "

The waiting time allows the anode in the radiogenic tube to cool down.

NOTE:

If, during the exposure, the patient moves, or the machine collides with the patient himself (or with any object), or you realise that the parameters set are not correct, you must release the X-ray button immediately, interrupting the emission of X-rays and the movement of the arm.

If this occurs, the following message will be displayed:

" ERROR: 206 PRESS >0< "

All the motors will switch off, and it will be possible, if necessary, to manually rotate the arm, allowing the patient to come out; **It is recommended that this movement be made with great care in order to prevent damage to the machine.**

Then press the "Patient Entrance" (6) key and the display will show:

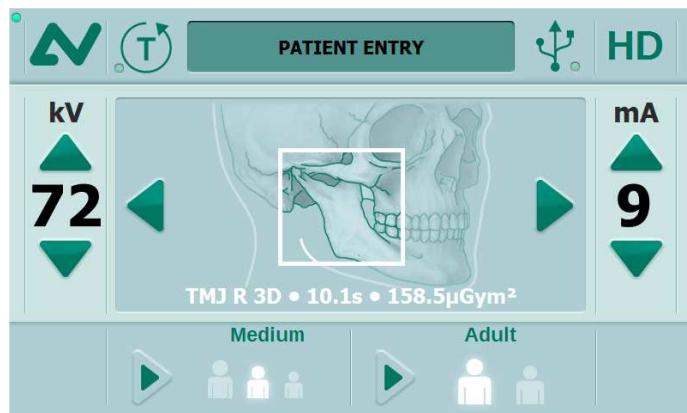
" MACHINE SETTING – Press >0< "

and then:

" WAIT FOR MACHINE SETTING "

The original position is re-established and the patient must be positioned once again.

8.11 Right TMJ in 3D mode


The Right TMJ examination in 3D mode allows a clear vision of the right condyle and how it positions itself inside the fossa. The examination is normally conducted in a rest position, i.e. with the mouth closed.

Using the functions of the image acquisition and management of program, planes of interest can be selected and therefore the position of the condyle analysed at various points and along three perpendicular axes in order to get an overview of the joint's anatomy.

8.11.1 Preparation of the device

To select the 3D TMJ Right exam, press the "Exam Mode Selection" area

(11) until the following image is displayed:

The system is positioned in the following configuration:

- **ADULT** with the lighting up of the corresponding graphic in the button
- **MEDIUM SIZE** with the lighting up of the corresponding graphic in the button

and the default settings are displayed if this is the first 3D TMJ exposure to be performed or the radiological parameters used in the last examination.

Once the settings have been completed, the relative chin support must be placed in position (see the operative notes in paragraph 8.3).

Check that the temple clamp device is in the 3D TMJ Right position (patient left side - Figure 14); if necessary move it into the correct position by means of the knob (3 - Figure 27).

8.11.2 Anatomic / Manual Exposure

NOTE:

If the previous exam was carried out manually, just press the "Exam

Mode Selection" area (11)

to change to Anatomic exposure.

After setting the machine, it is possible to choose between the following two operating modes:

- **ANATOMIC:** with the kV, mA and t values programmed on the basis of the type of patient and the size.
- **MANUAL:** with the possibility of altering the pre-set kV, mA and times.

NOTE:

In manual mode, the kV and mA parameters values are displayed in green color.

It is possible to press key (8)

to change from Adult to

Child.

8.11.2.1 Anatomic exposure

Select the type of patient with the **Adult/Child** key (8).

Select the type of build with the **Size** (9) key (*small - medium - large*).

On the basis of these selections, the display will visualise the kV and mA settings as in the table.

3D TMJ Right mode exposure values table (10.1 s)			
	Adult		Child
	kV	mA	kV
Small	80	8	64
Medium	82	9	66
Large	84	10	68

Table 10

The exposure time indicated (10.1 seconds) is relative to the sum of 360 X-ray pulses of 28 ms each that make up the exam.

8.11.2.2 Manual exposure

If the kV and mA combinations of the table Table 10 are not considered suitable for a specific examination, it will be possible to set new parameters using the manual mode.

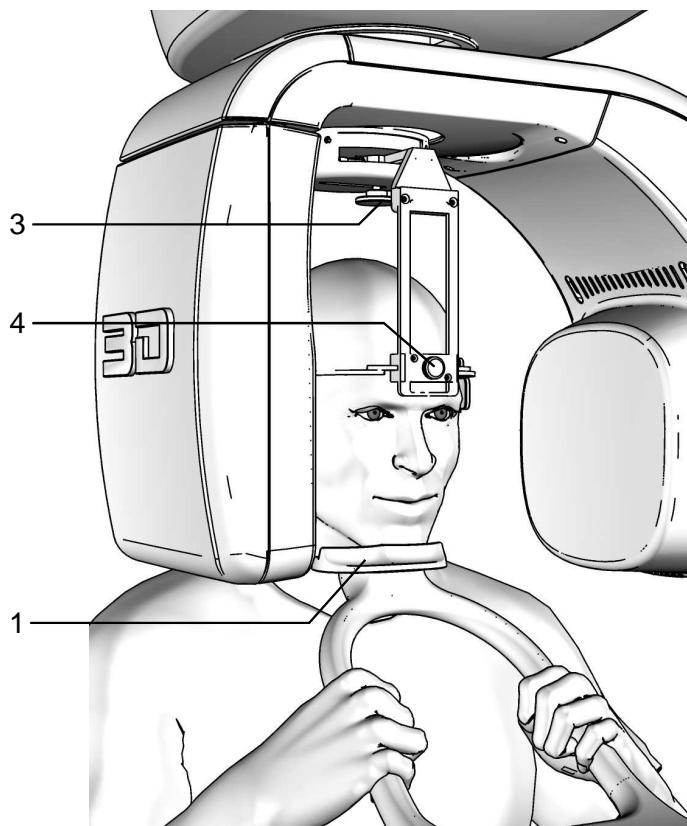
To modify the kV or mA values, press any of the increase (3) or decrease (4) arrows of the kV or mA parameters; the values change their color from black to green.

A parameter can be modified by pressing the increase key (3) and the

decrease key (4) of that parameter repeatedly.

The kV value can vary between *60 and 86 kV, with 2 kV steps*.

The value of mA can vary between *6 and 10 mA, with 1 mA steps*.



NOTE:

To change the values rapidly, keep the increase key (3) or the decrease key (4) pressed.

8.11.2.3 Preparation of the patient

1. Ask the patient to remove all metallic objects located in the area to be X-rayed (necklaces, earrings, glasses, hairpins, movable dental prosthesis, etc.). Ensure that there are no thick garments in the area to be X-rayed (coats, jackets, ties, etc.).
2. Ask the patient to put on the protective apron, or something similar, making sure that it does not interfere with the trajectory of the X-ray beams.
3. Position the patient upright to the 3D TMJ chin support. With the "Column movement" keys (15/16) raise/lower the column until the chin support rest is aligned with the patient's chin.
4. Place the patient in the temple clamp (Figure 27) by placing the chin on the surface of the relevant support; the hands should rest on the front handgrips; the patient must rest his chin against the reference on the chin support, using the left side (patient entrance view) of the support itself.

Figure 27 - 3D TMJ Right positioning

Legend positioning devices and patient centring

- 1 3D TMJ chin support
- 3 Temple clamp device position control
- 4 Temple clamp open/close knob

5. Set the height of the temple clamp just above the patient's orbital bone.

NOTE:

In the 3D TMJ exam, the laser centring devices are not active.

6. Place the temple clamp in contact with the patient's head by means of the appropriate knob (4 - Figure 27). In order to help the patient maintain the correct posture, use the head strip on the temple clamp passing it behind the nape of the patient's neck; check that, during this phase, the patient has not changed position.
7. **Ask the patient to: keep the lips closed, bring the tongue towards the palate, keep perfectly still and do not look at the rotating arm during the movements.**

8.11.3 Making an exposure

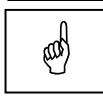
NOTE:

When the key "Test" (5) is pressed the Test function is activated.

In this condition, it will be possible to make the unit perform all the movements made during the examination **without emitting X-rays**. Once the cycle is completed, deactivate the "Test" function by pressing key again.

WARNING:

During the emission of X-rays, the protection procedures for the operator and personnel in the area must be in compliance with the local regulations.


In all cases, it is recommended that during the emission of X-rays, only the patient and operator be present in the room. If the operator is not protected by suitable screens, he must stand at least 2 meters away from the emission of the rays (see the Figure 1 and Figure 2).

1. Verify once again that the exposure data are correct. If not, correct them as described in paragraph 8.12.2.2; ensure that the machine's indicator light "Ready for X-rays" will come on, so press the ray button for the entire duration of the exposure, checking the contemporary working of the ray indicator light "X-rays in progress" (if you are within sight of the machine) and the acoustic ray signal. The following message will be displayed first:

" PRE-HEATING "

and then (after 2 seconds), the following message will be displayed:


" X-RAY "

NOTE:

Emissions are pulse in the volumetric mode; the acoustic signal isn't continuous either.

Keep the X-ray key pressed until the exam is complete.

NOTE:

If the machine is in the "Test" mode, the display will show:

" TEST X-RAY NOT ACTIVE "

NOTE:

If message:

" DIGITAL SENSOR IS NOT READY "

is present on the display, it means that the Digital Sensor is not properly inserted or configured.

To reset the message on the Rotograph EVO 3D, press key .

NOTE:

The rotation of the arm and the emission of the X-rays will start with a delay of 2 seconds from when the X-ray button is pressed. **As the X-ray button is of the "deadman's brake" type, it is necessary to keep it pressed until the end of the exposure.**

- Once the exposure is completed, the system will rotate back. When it has completed this movement, the display shows the message:

" PATIENT EXIT – Press >0< "

and it will be necessary to free the patient from the positioning device.

NOTE:

If the examination is made in "Test" mode with the patient already in position, he must not be removed from the temple clamp, to avoid

having to reposition the patient. The "Patient entrance" key (6)

must be pressed until the machine returns to the starting position. This movement can be stopped by pressing the same key.

Now the system is ready to perform a new examination.

- Press the key "Patient Entrance" (6)

to the starting position showing the message:

" AXIS POSITIONING PLEASE WAIT... "

The Digital Acquisition System will, in the meantime, process the image and display it.

WARNING:

Clean the chin support, the resting handgrips and the temple clamp thoroughly and change the head strip after every examination.

NOTE:

If a new exposure is required, but the waiting time calculated by the adaptive duty cycle has not yet expired, the display will show a message indicating the time remaining before the new examination can be performed:

" TUBE COOLING... PLEASE WAIT: xxx s "

The waiting time allows the anode in the radiogenic tube to cool down.

NOTE:

If, during the exposure, the patient moves, or the machine collides with the patient himself (or with any object), or you realise that the parameters set are not correct, you must release the X-ray button immediately, interrupting the emission of X-rays and the movement of the arm.

If this occurs, the following message will be displayed:

" ERROR: 206 PRESS >0< "

All the motors will switch off, and it will be possible, if necessary, to manually rotate the arm, allowing the patient to come out; **It is recommended that this movement be made with great care in order to prevent damage to the machine.**

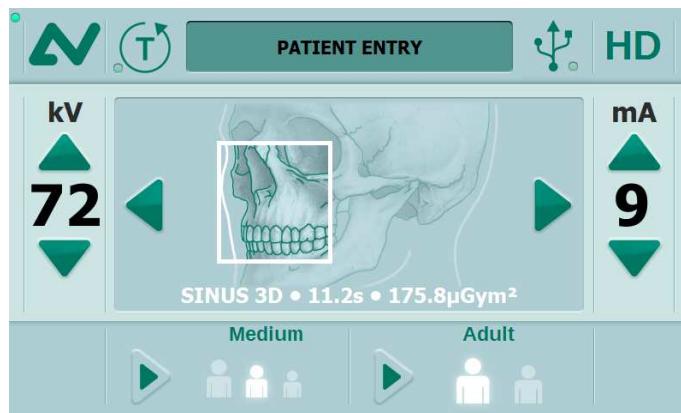
Then press the "Patient Entrance" (6) key and the display will show:

" MACHINE SETTING – Press >0< "

and then:

" WAIT FOR MACHINE SETTING "

The original position is re-established and the patient must be positioned once again.


8.12 SINUS in 3D mode

The images of the Sinus exam acquired in the 3D volumetric mode allow a total view of the frontal sinus area. In fact, by using the functions of the image acquisition and management program, different points of interest can be selected and the anatomy viewed along three distinct axes perpendicular to each other. This allows a clear view of any problems with the paranasal sinus or the associated anatomical structures (septum, turbinates, etc.).

8.12.1 Preparation of the device

To select the 3D Sinus exam, press the "Exam Mode Selection" area

(11) until the following image is displayed:

The system is positioned in the following configuration:

- **ADULT** with the lighting up of the corresponding graphic in the button
- **MEDIUM SIZE** with the lighting up of the corresponding graphic in the button

and the default settings are displayed if this is the first 3D TMJ exposure to be performed or the radiological parameters used in the last examination.

Once the settings have been completed, the relative chin support must be placed in position (see the operative notes in paragraph 8.3).

8.12.2 Anatomic / Manual Exposure

NOTE:

If the previous exam was carried out manually, just press the "Exam

Mode Selection" area (11)

to change to Anatomic exposure.

After setting the machine, it is possible to choose between the following two operating modes:

- **ANATOMIC:** with the kV, mA and t values programmed on the basis of the type of patient and the size.
- **MANUAL:** with the possibility of altering the pre-set kV, mA and times.

NOTE:

In manual mode, the kV and mA parameters values are displayed in green color.

It is possible to press key (8)

to change from Adult to

Child.

8.12.2.1 Anatomic exposure

Select the type of patient with the **Adult/Child** key (8).

Select the type of build with the **Size** (9) key (*small - medium - large*).

On the basis of these selections, the display will visualise the kV and mA settings as in the table.

3D Sinus mode exposure values table (11.2 s)			
	Adult		Child
	kV	mA	kV
Small	76	8	64
Medium	78	9	66
Large	80	10	68

Table 11

The exposure time indicated (11.2 seconds) is relative to the sum of 400 X-ray pulses of 28 ms each that make up the exam.

8.12.2.2 Manual exposure

If the kV and mA combinations of the table Table 11 are not considered suitable for a specific examination, it will be possible to set new parameters using the manual mode.

To modify the kV or mA values, press any of the increase (3) or decrease (4) arrows of the kV or mA parameters; the values change their color from black to green.

A parameter can be modified by pressing the increase key (3) and the

decrease key (4) of that parameter repeatedly.

The kV value can vary between *60 and 86 kV, with 2 kV steps*.

The value of mA can vary between *6 and 10 mA, with 1 mA steps*.


NOTE:

To change the values rapidly, keep the increase key (4) or the decrease key (5) pressed.

8.12.3 Preparation of the patient

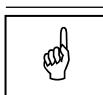
1. Ask the patient to remove all metallic objects located in the area to be X-rayed (necklaces, earrings, glasses, hairpins, movable dental prosthesis, etc.). Ensure that there are no thick garments in the area to be X-rayed (coats, jackets, ties, etc.).
2. Ask the patient to put on the protective apron, or something similar, making sure that it does not interfere with the trajectory of the X-ray beams.
3. Position the patient upright to the standard SINUS chin support.

With the keys "Column movement" (15/16)

lift/lower the

column until the chin support is aligned with the patient's chin.

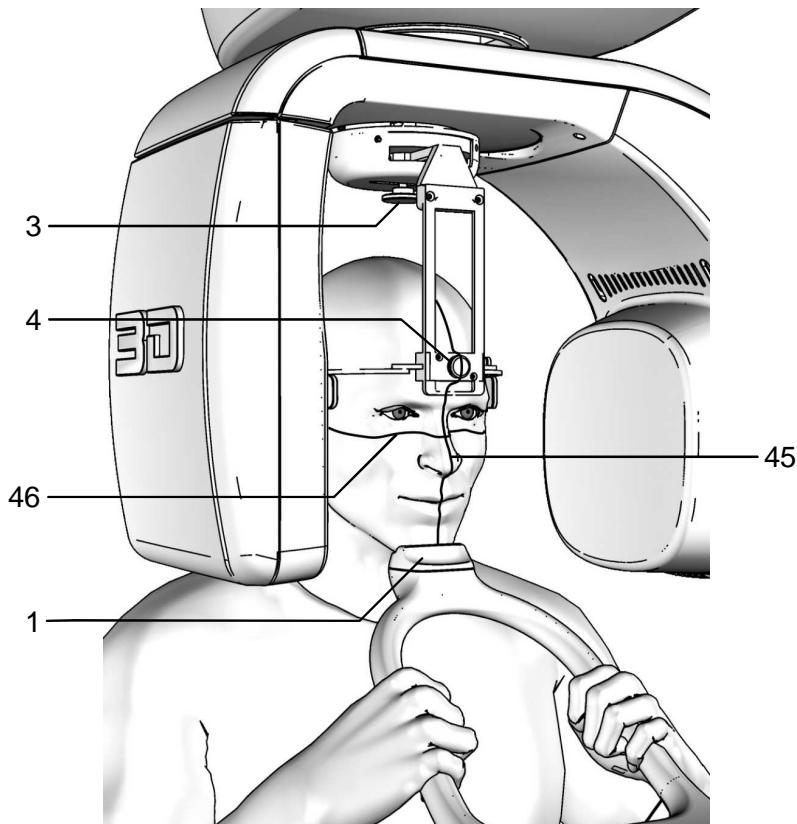
4. Verify that the temple clamp device is in the central position (Figure 14), and if necessary move it using the appropriate control on the top of the support (3 - Figure 28).
5. Place the patient in the temple clamp (Figure 28) by placing the chin on the surface of the relevant support; the hands should rest on the front handgrips; the patient must rest the chin against the reference on the chin support.
6. Set the height of the temple clamp just above the patient's orbital bone.
7. Instruct the patient to close his eyes.


8. Press the key "Centring devices ON" (14)

Two laser beams illuminate the line of the median sagittal plane and the horizontal line for the reference of the Frankfurt plane (Figure 19).

Position the patient's head in such a way as to ensure that the luminous beams fall in correspondence with the respective anatomical references;

The luminous beam of the Frankfurt plane can be adjusted according to the patient's height; this adjustment is achieved by adjusting the laser block on the side of the mirror.



NOTE:

The laser centring devices remain on for approximately 1 minute; shutdown can be anticipated by pressing the "Centring Device On" key (14) or, with alignment complete, by pressing the "Patient entrance" key

- (6)

to begin preparation for exposure.

Figure 28 – 3D Sinus positioning

Legend of Reference Lines

- 45 Midsagittal line
- 46 Frankfurt plane line

Legend positioning devices and patient centring

- 1 SINUS chin support
- 3 Temple clamp device position control
- 4 Temple clamp open/close knob

9. Place the temple clamp in contact with the patient's head by means of the appropriate knob (4 - Figure 28). In order to help the patient maintain the correct posture, use the head strip on the temple clamp passing it behind the nape of the patient's neck; check that, during this phase, the patient has not changed position.
10. At this point, the patient must move his feet towards the column, making sure to keep his head within the pre-aligned anatomical references. By doing so a greater distension of the spinal column is achieved, avoiding collisions with the tube-head with the patient's shoulders. Check that the Frankfurt plane is still horizontal.

11. Press the key "Patient Entrance" (6) to confirm the parameters. The luminous centring devices switch off and the rotating arm goes to its examination start position. Once alignment has been completed, the following message will be displayed:

" EXAM INIT "

The green LED "Ready of X-rays" lights up to indicate that pressing the X-ray button once more will start the radiation phase.

12. Ask the patient to: keep the lips closed, bring the tongue towards the palate, keep perfectly still and do not look at the rotating arm during the movements.

8.12.4 Making an exposure

NOTE:

When the key "Test" (5) is pressed the Test function is activated.

In this condition, it will be possible to make the unit perform all the movements made during the examination **without emitting X-rays**. Once the cycle is completed, deactivate the "Test" function by pressing key again.

WARNING:

During the emission of X-rays, the protection procedures for the operator and personnel in the area must be in compliance with the local regulations.

In all cases, it is recommended that during the emission of X-rays, only the patient and operator be present in the room. If the operator is not protected by suitable screens, he must stand at least 2 meters away from the emission of the rays (see the Figure 1 and Figure 2).

1. Verify once again that the exposure data are correct. If not, correct them as described in paragraph 8.12.2.2; ensure that the machine's indicator light "Ready for X-rays" will come on, so press the ray button for the entire duration of the exposure, checking the contemporary working of the ray indicator light "X-rays in progress" (if you are within sight of the machine) and the acoustic ray signal. The following message will be displayed first:

" PRE-HEATING "

and then (after 2 seconds), the following message will be displayed:

" PRE-HEATING "

NOTE:

Emissions are pulse in the volumetric mode; the acoustic signal isn't continuous either.

Keep the X-ray key pressed until the exam is complete.

NOTE:

If the machine is in the "Test" mode, the display will show:

" TEST X-RAY NOT ACTIVE "

NOTE:
If message:

" DIGITAL SENSOR IS NOT READY "

is present on the display, it means that the Digital Sensor is not properly inserted or configured.

To reset the message on the Rotograph EVO 3D, press key .

NOTE:
The rotation of the arm and the emission of the X-rays will start with a delay of 2 seconds from when the X-ray button is pressed. **As the X-ray button is of the "deadman's brake" type, it is necessary to keep it pressed until the end of the exposure.**

2. Once the exposure is completed, the system will rotate back. When it has completed this movement, the display shows the message:

" PATIENT EXIT – Press >0< "

and it will be necessary to free the patient from the positioning device.

NOTE:
If the examination is made in "Test" mode with the patient already in position, he must not be removed from the temple clamp, to avoid

having to reposition the patient. The "Patient entrance" key (6)

must be pressed until the machine returns to the starting position. This movement can be stopped by pressing the same key.

Now the system is ready to perform a new examination.

3. Press the key "Patient Entrance" (6) , the unit will move back

to the starting position showing the message:

" AXIS POSITIONING PLEASE WAIT... "

The Digital Acquisition System will, in the meantime, process the image and display it.

WARNING:

Clean the chin support, the resting handgrips and the temple clamp thoroughly and change the head strip after every examination.

NOTE:

If a new exposure is required, but the waiting time calculated by the adaptive duty cycle has not yet expired, the display will show a message indicating the time remaining before the new examination can be performed:

" TUBE COOLING... PLEASE WAIT: xxx s "

The waiting time allows the anode in the radiogenic tube to cool down.

NOTE:

If, during the exposure, the patient moves, or the machine collides with the patient himself (or with any object), or you realise that the parameters set are not correct, you must release the X-ray button immediately, interrupting the emission of X-rays and the movement of the arm.

If this occurs, the following message will be displayed:

" ERROR: 206 PRESS >0< "

All the motors will switch off, and it will be possible, if necessary, to manually rotate the arm, allowing the patient to come out; **It is recommended that this movement be made with great care in order to prevent damage to the machine.**

Then press the "Patient Entrance" (6) key and the display will

show:

" MACHINE SETTING – Press >0< "

and then:

" WAIT FOR MACHINE SETTING "

The original position is re-established and the patient must be positioned once again.

8.13 Cephalometric examination

There is no rotation of the tube-head (X-ray generator) support arm and sensor holder for the cephalometric examination.

Various projections are possible for the cephalometric examination. according to the size of the image and the projection chosen, the primary collimator will be placed automatically in the correct position, together with the secondary sensor and the digital sensor.

The Cephalometric examination is fitted with a Soft Tissues Filter (STF); This filter reduces the dose in areas with low bone content and highlights the patient's profile which, under normal conditions, would be overexposed and so not visible.

Rotograph EVO 3D makes different kinds of exposures, according to the type of selection made:

18x22 Asymmetric for Latero-Lateral (L.L.)	24x22 Symmetric for Posterior- Anterior (P.A.) and Antero- Posterior (A.P.)	24x22 Asymmetric for Latero-Lateral (L.L.)	30x22 Symmetric for Latero-Lateral (L.L.)	18x22 Symmetric for assessment of bone growth (A.P.)
--	---	--	---	--

The examination can be performed in high-resolution mode (h) or normal resolution (n) for all these CEPH formats.

The bone growth assessment examination can also be performed, according to that described in paragraph 8.14.

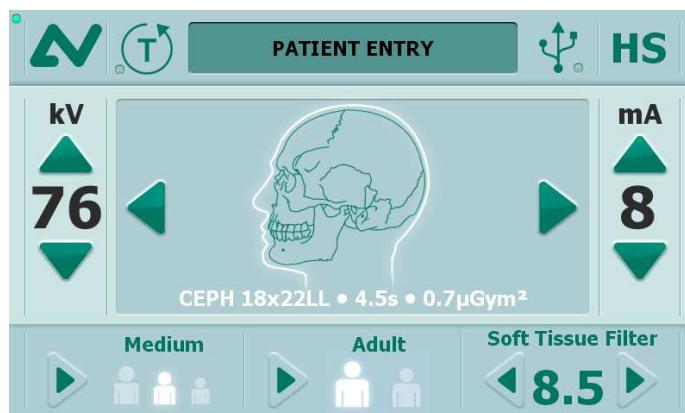
WARNING:

The measurement of lengths on digital images depends on the specific length calibration of the program used.

It is therefore very important to check the length calibration of the program.

In Cephalometric examination, to obtain the measurement of the anatomical part, taking into consideration the enlargement factor, the length calibration factor is:

- 100 pixels = 8.7 mm in High Resolution
- 100 pixels = 13 mm in Normal Resolution.


8.13.1 Preparation of the device

To select the CEPH exam, press the "Exam Mode Selection" area

(11)

until the following image is displayed:

1. Press the "Patient Entrance" (6) key ; the display will toggle the following two messages:

" REMOVE CHIN REST "

and

" CLOSE TEMPLE SUPPORT "

The first message tells the operator to remove the chin support, while the second message tells him to close the temple clamp. These operations are necessary to prevent interference with the X-rays beam and with the Panoramic sensor holder when the arm is being positioned.

WARNING:

Neither of the two messages are controlled by the system and they can therefore appear even if the unit has been set correctly until the "Patient Entrance" key (6) is pressed.

WARNING:

There is no need to position any type of chin support for the cephalometric examination. The chin support used for panoramic examinations must be removed as indicated on the display. If the chin support is not removed, it will collide with the sensor holder during alignment and can obscure some anatomical parts of the patient during the examination.

At the same time, the temple clamp must be closed, in order to avoid collision with the rotating arm.

2. Once what was required is performed, press the key "Patient

Entrance" (6) .

The two messages will disappear and the machine will align automatically with respect to the chest stand containing the digital sensor and the following message will be displayed:

" AXIS POSITIONING PLEASE WAIT... "

Once alignment is completed, the following message will be displayed:

" OPEN PANO SENSOR HOLDER "

requesting the operator to open the Panoramic sensor holder.

NOTE:

The position of the sensor holder for panoramic examination is controlled by two microswitches, it must therefore be completely opened.

You can pass from High Speed (Normal resolution - indicated by "HS") to High Definition (indicated by "HD"), by pressing key

(7) and viceversa.

Pressing "Exam Mode Selection" area (11)

the unit will

return to EVO PANORAMIC position; the display shows:

" CONFIRM EXIT? Y=Press >0<; N=Press T "

Press the "Patient Entrance" (6) key to confirm or the "Test" (5) key to cancel the setting.

NOTE:

For a given image format, the scan time is lower in Normal Resolution mode; this allows to administer a lower dose to the patient and still achieve an image of useful quality for orthognathic diagnosis albeit with a lower spatial resolution in relation to the High Resolution image.

NOTE:

The system is positioned in the following configuration:

- ADULT with the lighting up of the corresponding graphic in the button
- MEDIUM SIZE with the lighting up of the corresponding graphic in the button.

3. By means of the keys "Arrow right" (13) and "Arrow left" (12)

select the dimensions of the image and the type of projection (see the table at the beginning of the Chapter).

8.13.2 Anatomic / Manual Exposure

NOTE:

If the previous exam was made in manual mode, just press the "Exam

Mode Selection" area (11)

to change to Anatomic exposure.

After setting the machine accordingly, the following two operating modes may be selected:

- **ANATOMIC:** with the kV and mA values programmed based on the type of patient and the size; Soft tissues Filter in default position
- **MANUAL:** with the possibility of changing the kV, mA and Soft Tissue Filter values set.

NOTE:

In manual mode, the kV and mA parameters values are displayed in

green color; it is possible to press key (8)

to change

from Adult to Child.

8.13.2.1 Anatomic exposure

Select the type of patient with the **Adult/Child** key (8).

Select the type of build with the **Size** (9) key (*small - medium - large*).

The kV and mA values will be displayed according to the selections made as per the following table:

	Adult		Child	
	kV	mA	kV	mA
Small	70	6	70	6
Medium	74	6	72	6
Large	76	6	74	6

Table 12: Latero-Lateral projection

	Adult		Child	
	kV	mA	kV	mA
Small	74	12	72	10
Medium	76	12	74	10
Large	80	10	76	10

Table 13: Antero-Posterior projection

8.13.2.2 Manual exposure

If the kV and mA combinations in the table Table 12 or Table 13 are not considered suitable for a specific examination, it will be possible to set new parameters using the manual mode.

NOTE:

The kV, mA and Soft Tissues Filter values can be changed manually. The parameter "fxx.x" indicates the position of the STF and must be set according to the value on the graduated scale on the nose rest (Figure 29). The value is stored when the modified number is displayed on the second line (about 3 seconds).

To modify the kV or mA values, press any of the increase (3) or decrease (4) arrows of the kV or mA parameters; the values change their color from black to green.

To modify the Soft Tissue Filter value, press the left (decrease) or right (increase) arrows of the STF parameter.

A parameter can be modified by pressing the increase arrow and the decrease arrow of that parameter repeatedly.

The "kV" value can vary between *60 and 80 kV, with 2 kV steps*.

The value of mA can vary between *6 and 12 mA, with 1 mA steps*.

The value of the STF can vary between *6 and 10.5 cm, with steps of 0.1 cm*.

NOTE:

To change the values rapidly, keep any of the arrows pressed.

8.13.3 Preparation of the patient

1. Ask the patient to remove all metallic objects located in the area to be X-rayed (necklaces, earrings, glasses, hairpins, movable dental prosthesis, etc.). Ensure that there are no thick garments in the area to be X-rayed (coats, jackets, ties, etc.).
2. Ask the patient to put on the protective apron, or something similar, making sure that it does not interfere with the trajectory of the X-ray beams.
3. Open the ear centring device (Figure 29) at maximum by means of the upper part of the centring device's rods. Move the nose rest (Figure 29) fully outwards. Manually rotate the craniostat group according the cephalometric projection to be made, moving the upper part of the ear centring device (Figure 29).
4. Position the patient upright near the auricular centring device.

Using the "Column movement" keys (15/16)

the column until the centring pins (Figure 29) are close of the auricular canal and then secure the patient's head so that the pins penetrate the ear hole (Figure 29) acting on the top of the rods. If a Latero-Lateral examination is performed, position the nose rest.

5. By selecting an "asymmetric" projection, the Soft Tissues Filter (STF) will be automatically inserted.

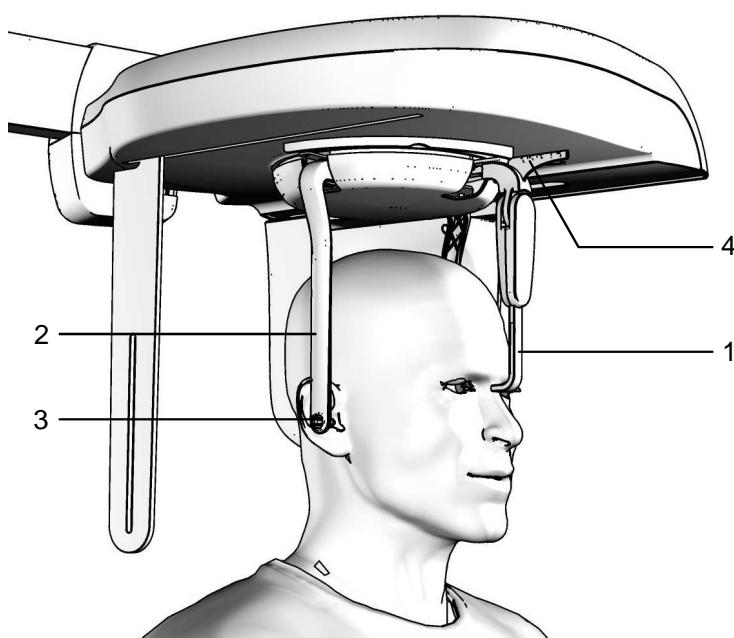


Figure 29

Legend

1	Nose rest
2	Ear centring device
3	Pins for ear centring device
4	Graduated scale

8.13.4 Making an exposure

WARNING:

During the emission of X-rays, the protection procedures for the operator and personnel in the area must be in compliance with the regulations in force in the country where the machine is used.

In all cases, it is recommended that during the emission of X-rays, only the patient and operator be present in the room. If the operator is not protected by suitable screens, he must stand at least 2 meters away from the emission of the rays (see Figure 1 and Figure 2).

1. Verify once again that the exposure data are correct (see paragraph 8.13.2). Advise the patient to remain still and to keep his mouth closed, with the teeth touching, throughout the duration of the exposure.

Press the "Patient Entrance" key (6) .

The unit moves to the correct start position.

The "Ready for X-rays" LED lights indicating that the device is ready to emit X-rays.

NOTE:

The operation can be cancelled by pressing the "Patient entrance"

key (6) .

2. Press the X-ray button for the entire duration of the exposure, checking the concurrent working of the ray indicator light "X-rays in progress" (if you are within sight of the machine) and the acoustic ray signal.

The following message will be displayed first:

" PRE-HEATING "

and then (after 2 seconds), the following message will be displayed:

" X-RAY "

NOTE:

If message:

" DIGITAL SENSOR IS NOT READY "

is present on the display, it means that the Digital Sensor is not properly inserted or configured.

To reset the message on the Rotograph EVO 3D, press key .

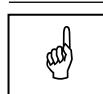
NOTE:

X-rays are emitted with a delay of two seconds from pressing the X-ray button to allow the heating of the filament and the control of all set parameters. **Since the X-ray button is a "dead man" control, it must be kept pressed until the end of the exposure.**

- With the exposure completed, the secondary collimator moves to the park position, to allow the exit of the patient.
All the values of the exposure just made reappear on the display.

WARNING:

The ear centring devices and temple clamp must be cleaned thoroughly after each exam.



NOTE:

If a new exposure is required, but the waiting time calculated by the adaptive duty cycle has not yet expired, the display will show a message indicating the time remaining before the new examination can be performed:

" TUBE COOLING... PLEASE WAIT: xxx s "

The waiting time allows the anode in the radiogenic tube to cool down.

NOTE:

If the patient moves during the exposure, or if you realise that incorrect parameters have been set, it will be necessary to stop pressing ray button immediately, to interrupt the emission of rays.

The following message will be displayed:

" ERROR: 206 PRESS >0< "

Then press the "Patient Entrance" key (6) .

The system will then return to the start condition and the patient will need to be repositioned again.

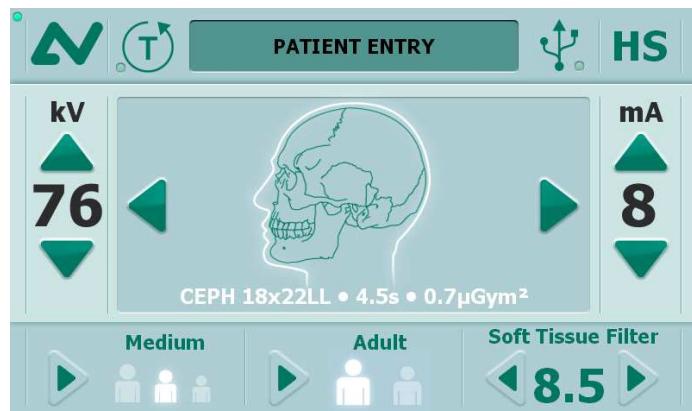
8.14 Examination to assess bone growth (Carpus)

The cephalometric device can also be used to carry out X-rays to evaluate the state of calcification and bone growth, X-raying the hand/pulse complex to obtain an X-ray that contains the anatomic details necessary to evaluate the patient's bone growth trend.

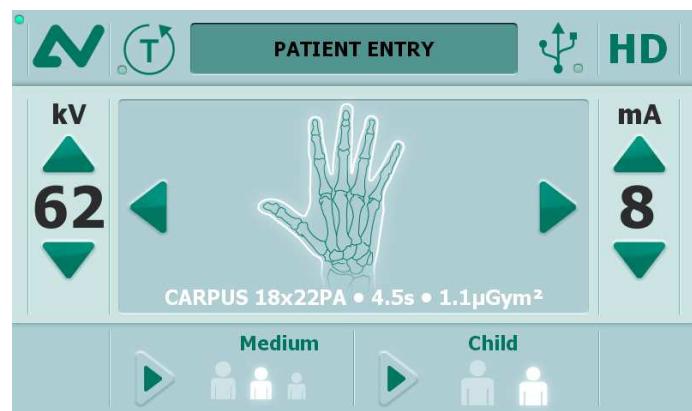
The set image format to perform this examination is 18x22 Symmetric and cannot be changed; therefore it is necessary to position the ear rods and nose rest in the same way as for the Antero-Posterior cephalometric examination, so that these elements do not interfere with the path of the X-rays. Refer to Figure 30.

WARNING:


The measurement of lengths on digital images depends on the specific length calibration of the program used.


It is therefore very important to check the length calibration of the program.

In CARPUS examination, to obtain the measurement of the anatomical part, taking into consideration the enlargement factor, the length calibration factor is 100 pixels = 8.7 mm.


8.14.1 Preparation of the device

1. Select the CEPH exam, pressing "Exam Mode Selection" area

(11) until the following image is displayed:

2. By means of the keys "Arrow right" (13) and "Arrow left" (12) select the CARPUS examination:

3. Press the "Patient Entrance" (6) key ; the display will toggle the following two messages:

" REMOVE CHIN REST "

and

" CLOSE TEMPLE SUPPORT "

The first message tells the operator to remove the chin support, while the second message tells him to close the temple clamp. These operations are necessary to prevent interference with the rays beam and with the panoramic sensor holder when the arm is being positioned.

WARNING:

Neither of the two messages are controlled by the system and they can therefore appear even if the unit has been set correctly.

WARNING:

There is no need to position any type of chin support for the cephalometric examination. The chin support used for panoramic examinations must be removed as indicated on the display. If the chin support is not removed, it will collide with the sensor holder during alignment and can obscure some anatomical parts of the patient during the examination.

At the same time, the temple clamp must be closed, in order to avoid collision with the rotating arm.

- Once what was required is performed, press the key "Patient Entrance" (6) .

The two messages will disappear and the machine will align automatically with respect to the chest stand containing the digital sensor and the following message will be displayed:

" AXIS POSITIONING PLEASE WAIT... "

Once alignment is completed, the following message will be displayed:

" OPEN PANO SENSOR HOLDER "

requesting the operator to open the Panoramic sensor holder.

NOTE:

The position of the sensor holder for panoramic examination is controlled by two sensors, it must therefore be completely opened.

Pressing "Exam Mode Selection" area (11)

the unit will

return to EVO PANORAMIC position; the display shows:

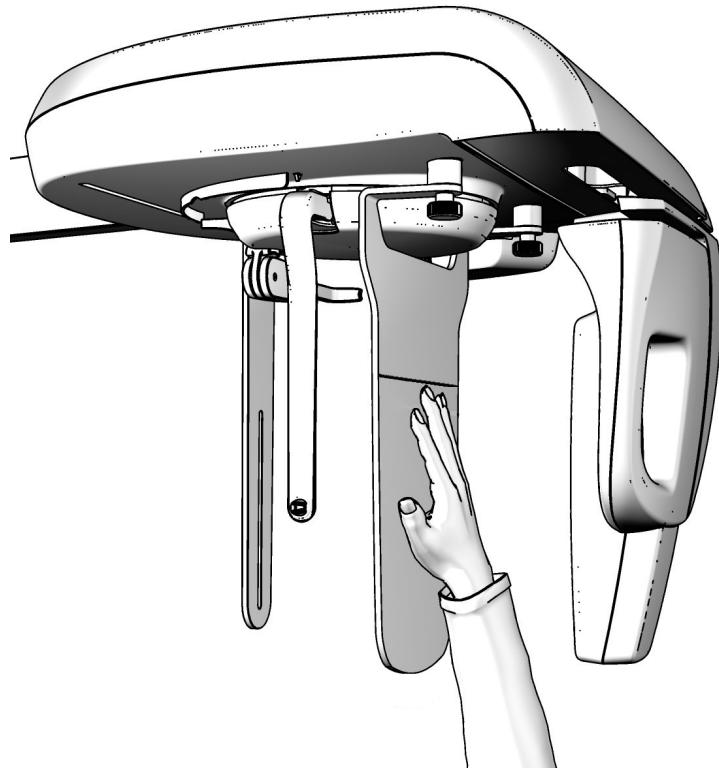
"CONFIRM EXIT? Y=Press >0< ; N=Press T "

Press the "Patient Entrance" (6) key to confirm or the "Test" (5) key to cancel the setting.

5. Regulate the exposure parameters as required, using the pre-set values or manual selection; the display will show the kV and mA settings as per the following table.

	Child	
	kV	mA
Small	60	6
Medium	60	6
Large	60	6

Table 14


8.14.2 Patient preparation

1. Turn the ear centring device to the Antero-posterior position; move the nose rest device to the park position.
2. Connect the positioning support for the Carpus exam. The reference line must be facing the sensor.
3. Place the patient slightly to the side of the cephalometry device.
4. Place the patient's hand so that it is between the sensor and positioning support (Figure 30).

The support helps the operator in positioning the anatomic part at the centre of the irradiated zone. The horizontal reference line helps in correctly positioning the hand in a vertical direction.

The common radiological procedure in the study of children's bone growth, suggests to place the tip of the middle finger tangentially to the reference line.

The hand of the patient should be in full contact with the support and must form a vertical line with the forearm in order to avoid any risk of collision with the sensor during the scanning movement.

Figure 30

8.14.3 Making an exposure

WARNING:

During the emission of X-rays, the protection procedures for the operator and personnel in the area must be in compliance with the regulations in force in the country where the machine is used.

In all cases, it is recommended that during the emission of X-rays, only the patient and operator be present in the room. If the operator is not protected by suitable screens, he must stand at least 2 meters away from the emission of the rays (see Figure 1 and Figure 2).

1. Press the "Patient Entrance" key (6) .

The unit moves to the correct start position.

The "Ready for X-rays" LED lights indicating that the device is ready to emit X-rays.

NOTE:

The operation can be cancelled by pressing the "Patient entrance"

key (6) .

2. Press the X-ray button for the entire duration of the exposure, checking the concurrent working of the ray indicator light "X-rays in progress" (if you are within sight of the machine) and the acoustic ray signal.

The following message will be displayed first:

" PRE-HEATING "

and then (after 2 seconds), the following message will be displayed:

" X-RAY "

NOTE:

If message:

" DIGITAL SENSOR IS NOT READY "

is present on the display, it means that the Digital Sensor is not properly inserted or configured.

To reset the message on the Rotograph EVO 3D, press key

NOTE:

X-rays are emitted with a delay of two seconds from pressing the X-ray button to allow the heating of the filament and the control of all set parameters. **Since the X-ray button is a "dead man" control, it must be kept pressed until the end of the exposure.**

- With the exposure completed, the secondary collimator moves to the park position, to allow the exit of the patient.

All the values of the exposure just made reappear on the display.

NOTE:

If a new exposure is required, but the waiting time calculated by the adaptive duty cycle has not yet expired, the display will show a message indicating the time remaining before the new examination can be performed:

" TUBE COOLING... PLEASE WAIT: xxx s "

This time enables the X-ray tube's anode to cool down.

NOTE:

If the patient moves during the exposure, or if you realise that incorrect parameters have been set, it will be necessary to stop pressing ray button immediately, to interrupt the emission of rays.

The following message will be displayed:

" ERROR: 206 PRESS >0< "

Then press the "Patient Entrance" key (6)

The system will then return to the start condition and the patient will need to be repositioned again.

8.15 Messages on display

Rotograph EVO 3D is fully controlled by a microprocessor which controls the programming of the emission parameters and signals the various conditions of the machine, the possible abnormalities and errors via displayed messages.

The messages can be divided into two groups:

- **operation messages:** these messages tell the operator how to set up the unit for the examination
- **error messages:** these messages are displayed when an error occurs; there are two kinds of error messages as follows:

1 - Messages prompted when the X-ray emission button is released by

the operator or by pressing the "Patient entrance" key (6) .

The message displayed will be as follows

" ERROR: xxx PRESS >0< "

Operations are reset by pressing key (6) .

2 - Messages generated by a system error. In this case, the Technical Service must be called.

Messages that require the intervention of the Technical Service are displayed as follows:

" ERROR: xxx CALL TECH SUPP "

3 - Messages related to H.F. board problems. If this occurs, switch off the unit. Wait a few minutes for the capacitors of the relative circuit to discharge, and then switch the machine on again. If the problem persists, call the Technical Service.

" ERROR: xxx POWER OFF "

Following are reported the different error messages and the relative controls and operations to be performed.

8.15.1 Error message with error code E000 ÷ E199

Errors that cannot be reset.

These are errors inside the control system; it is necessary to call the Technical Assistance Service.

8.15.1.1 E110 – System clock battery fault

This message indicates that the battery is flat or defective.

If a tube cooling time of 90 seconds is necessary when the unit is turned on, wait until the end of the period: the display shows "**E110 – Press >0<**".

Perform an exam, then turn the unit off and wait a few minutes before turning it back on again.

If the error is not repeated, this means that the battery is flat: leave the equipment on to recharge it.

If the error persists, call the Technical Assistance Service.

8.15.2 Error message with error code E200 ÷ E299

This category of errors apply to the rotation motor; of these only the error "**E206 - Collision with patient**", caused by a possible collision between the rotation arm and the patient, is an actual reversible error. Press the

"Patient Entrance" key (6) to reset the error and to perform the axes centring operation.

For all other cases, call the Technical Assistance Service.

8.15.3 Error message with error code E300 + E399

8.15.3.1 Error message with error code E300 + E303

Errors that cannot be reset.

These are errors related to the zero sensor of the Digital CEPH secondary collimator.

Turn the system off and then on again; if the error persists, call the Technical Assistance Service.

8.15.3.2 Error message with error code E320 + E323

Errors that cannot be reset.

These are errors related to the zero sensor of the Digital CEPH primary collimator.

Turn the system off and then on again; if the error persists, call the Technical Assistance Service.

8.15.3.3 E340 - Sensor holder not in PAN position

A Panoramic type examination was requested, but the sensor holder does not appear to be closed; move it to the PAN position and press the

"Patient entrance" key (6) to reset the error condition.

8.15.3.4 E360 / E361 - X-ray button pressed during power-up or during the movement of the axes

Release the X-ray button if pressed; press the "Patient Entrance"

key (6) to reset the error condition

If the error does not disappear, call the Technical Assistance Service.

8.15.3.5 E362 - X-ray button released during examination

NOTE:

The X-ray button has the so-called "dead-man" function, i.e. it must be kept pressed for the whole time of the examination, **also during the phases of the examination with emission interruption** (for instance, in open/close mouth TMJ) or during the volumetric examination.

This message signals that the button was released during the examination phase; the motors are unlocked, therefore the patient can get out of the system. Repeat the system centring phase and repeat the examination.

8.15.3.6 E363 - Interruption of the link between PC and equipment

Error that cannot be reset.

This error can be related to issue occurring over the network link between equipment and PC, either to configuration of the software. Turn the system off and then on again; if the error persists, call the Technical Assistance Service.

8.15.4 Error message with error code E400 + E402

Errors related to the Digital CEPH Soft Tissues Filter.
Turn the system off and then on again; if the error persists, call the Technical Assistance Service.

When these errors are present, it is not possible to perform CEPH exams, while other exams are active.

Take a 3D Full Dentition (60kV - 6mA) without patient and verify during the preview image acquisition that the Soft Tissue Filter is out of the X-ray field (Figure 31); in this case you can continue using the equipment for panoramic and 3D examination.

If the Soft Tissue Filter is present on the image (Figure 32), stop using the equipment.

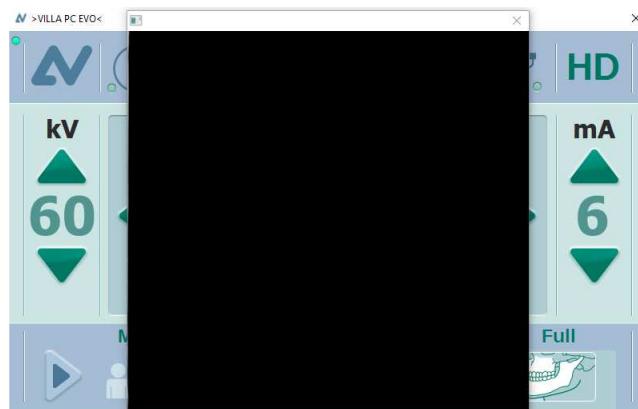


Figure 31: Soft Tissue Filter out of the X-ray field

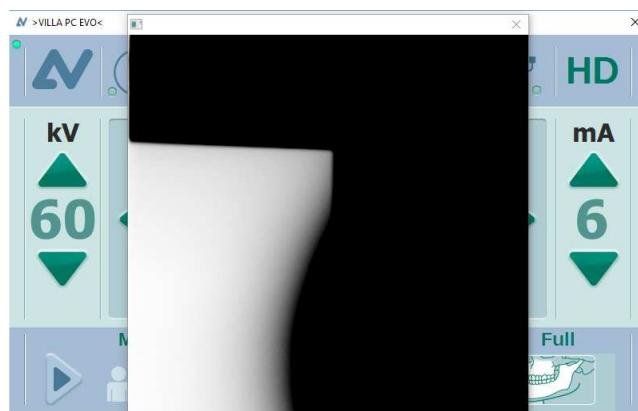


Figure 32: Soft Tissue Filter in the X-ray field

8.15.5 Error message with error code E441 + E444

These errors are displayed in case of malfunctioning of the partial volume collimators.

8.15.5.1 E441 / E443 - Partial volume collimators fault

Errors that cannot be reset.

These errors are displayed at the unit power on.

Turn the system off and then on again; if the error persists, call the Technical Assistance Service.

8.15.5.2 E442 - Mandibular volume collimator fault

The unit could regularly perform any kind of examinations except of 3D Dentition with mandibular partial volumes.

In any case, call the Technical Assistance Service to restore the complete functionality of the unit.

8.15.5.3 E444 - Maxillary volume collimator fault

The unit could regularly perform any kind of examinations except of 3D Dentition with maxillary partial volumes.

In any case, call the Technical Assistance Service to restore the complete functionality of the unit.

8.15.6 Error message with error code E700 + E799

WARNING:

These error codes refer to the X-rays generation, therefore, they can also indicate a safety problem.

With error code E759, turn off immediately the system as a not requested X-ray emission was detected. In this case, call immediately the Technical Assistance Service.

8.15.6.1 E755 - Timer back up triggered

This error signals that the emission has not completed correctly, but it was interrupted but the safety timer backup that cuts in to stop the emission also in case of failure of the control system.

Turn off immediately the system as an unwanted emission could be present.

8.15.6.2 E774 - X-rays button not pressed

The lack of the button is signalled also if the emission software control is present.

The error signals a possible failure on the connection of the X-rays button with the generator card.

8.15.6.3 E775 - X-rays button released prematurely

The release of the X-rays button during the emission phase is signalled; this signalling has a different meaning from that of the corresponding E362 error, as this message is generated by the HF card, which signals a possible failure on the connection of the X-rays button with the card itself.

8.15.7 Error message with error code E850 + E852

These errors signals abnormal situations due to the operator's interface.

8.15.7.1 E850 - One or more keys appear to be pressed on start-up

The system checks that all keys are not pressed at start-up; if one or more appear to be pressed, this error is displayed.
Release the key and restart the system. If the error persists, call the Technical Assistance Service

8.15.7.2 E851 – Column movement keys pressed

This error is displayed in case, when releasing the up/down column movement keys, the movement itself is not completed; pressing any other key interrupts the movement to avoid injuries to the patient.

Press the "Patient Entrance" key (6) to reset the error condition.

8.15.7.3 E852 - Key "Patient Entrance" pressed during the movement

The keyboard is disabled during the movement of the system, but by pressing the "Patient entrance" key (6) , the movement is stopped.

This operation is useful in case a movement anomaly is noticed.

Press the "Patient Entrance" key (6) to reset the error condition.

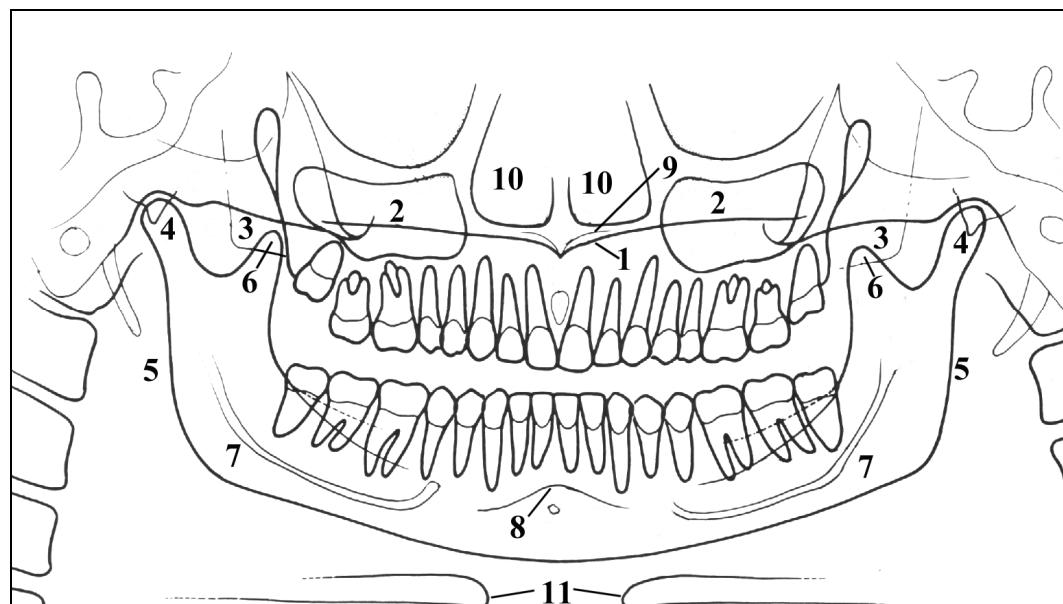
8.16 Research and correction of possible defects in standard dental X-rays

8.16.1 Faults due to the wrong positioning of the patient

Problem	Description	Solution
Overlarge and blurred incisors.	The patient is not positioned correctly. He is too far from the optimal focal plane.	Reposition the patient ensuring that he/she bites with the incisors on the appropriate mark.
Over-small and blurred incisors.	The patient is not positioned correctly. He is too near the optimal focal plane.	Reposition the patient ensuring that he/she bites with the incisors on the appropriate mark.
Image with blank central area.	The spine of the patient inhibits the passage of the X-ray as it is too compressed.	Check the alignment of the Frankfurt plane, try to stretch the cervical part of the spine by moving the patient's feet forward (see paragraph 8.5.3 points 3/4/6/7) and, if necessary, correct the height of the chin support.
Asymmetric dental arch.	The sagittal medial line does not correspond to the laser centring beam.	Realign the patient (see paragraph 8.5.3 point 6).
Upper apical area too dark.	The patient does not keep his lips shut and the tongue is not against the palate.	See paragraph 8.5.3 point 8.
Upper central apical area out of focus.	The patient keeps his head rotated backwards (Frankfurt plane not aligned).	Position the patient again and realign the Frankfurt plane.
The image is slanted in comparison with the longitudinal axis and some anatomical structures are not symmetric.	The patient's head is slanted (not vertical).	Position the patient again, correcting the position of the sagittal plane.
The teeth on one side are bigger than those on the other side.	The patient's head is rotated with respect to the axis of the bite.	Position the patient again, correcting the position of the sagittal plane and controlling that his head does not rotate.
Presence (in CEPH examination) of a white area in the lower part of the image.	Panoramic chin-rest still mounted.	Perform the exam again, removing the PAN chin-rest.

8.16.2 Defects due to wrong data setting

Problem	Description	Solution
Under or overexposed image.	The set kV value is not fit for the size of the patient.	Try to change the contrast by using the appropriate commands of the image acquisition/management program, and if necessary repeat the examination varying the kV and/or mA. Increased them if the image is too light, and decrease if the image is too dark. If the error happens again contact the Technical Service.
Completely blank image.	It was not subjected to X-rays.	Check the passage of the X-rays via the acoustic and visual signal. If no solution can be found, call the Technical Service.
Soft Tissue not (or poorly) visible in L-L projection.	The STF value is not correct.	Refer to paragraph 8.13.3 to adjust the position of the "STF".
	A symmetrical format was selected	Select an asymmetrical format (which will enable the Soft Tissue Filter).


8.16.3 Defects due to the unit

1. Should the image show non irradiated areas or be completely white, this can mean that there is a defect in the alignment between X-ray beams and image or a partial or total missing of irradiation; in any case, call the Technical Service.
2. In the event the soft tissue of the patient is not highlighted while performing a cephalometry, in a latero-lateral, let the Technician verify the adjustment of the Soft Tissue Filter.

8.17 Analysis of the problems on the standard panoramic examinations

The panoramic radiography is the examination of the maxillo-facial region normally used to view the dental region inside the complete head and sinuses-orbital complex.

In a good Panoramic, you can distinguish the main anatomic structures that are simplified in the diagram below (which indicates only the main ones, and is not complete).

Figure 33

Ref. Anatomic structure

- 1 Palatal plane
- 2 Maxillary sinus
- 3 Maxilla and maxillary tuberosity
- 4 Temporo mandibular condyle
- 5 Ascending ramus of the TMJ
- 6 Coronoid process (overlap with maxilla)
- 7 Mandibular canal
- 8 Chin foramen
- 9 Anterior nasal spine
- 10 Nasal cavities
- 11 Ioid bone (normally duplicated)

8.17.1 Proper positioning of the patient

The proper positioning of the patient during the panoramic examination is very important in order to get good quality radiography. This is due to the fact that the shape of the focussed area, e.g. of the layer clearly shown on the image, tends to follow the dental arch and has a non-constant deepness.

The objects outside this focused area will therefore appear blurred on the radiography.

1. The patient should not wear clothes that may interfere with the X-ray beams, also to leave more space between the patient's shoulders and the rotating arm of the machine. **Care must be taken in order to avoid interference between the X-ray beam and the protective apron worn by the patient.**
2. Metal objects (necklaces, earrings etc.) must be avoided; these objects not only create radio-opaque images in their own position, but also false images projected in other parts of the radiography, so disturbing the correct view of the anatomy.
3. The patient's head must be slightly tilted downward in order to make the Frankfurt plane horizontal. In this way, the hard palatal ceiling will be projected slightly over the superior apex of the anterior teeth. If the patient has a low palatal ceiling, slightly increase the downward tilting.
4. Align the sagittal medial plane with the centre of the chin support, normally indicated by the relevant light beam.

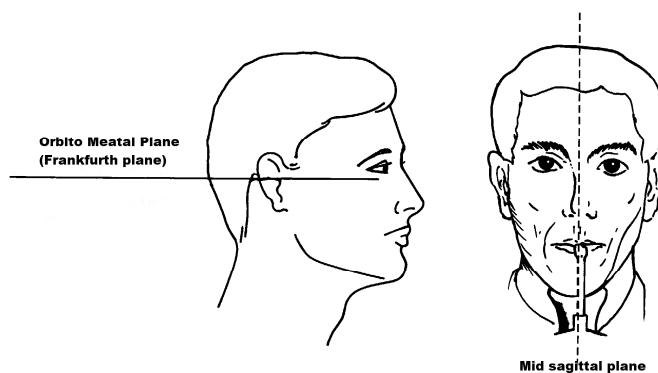
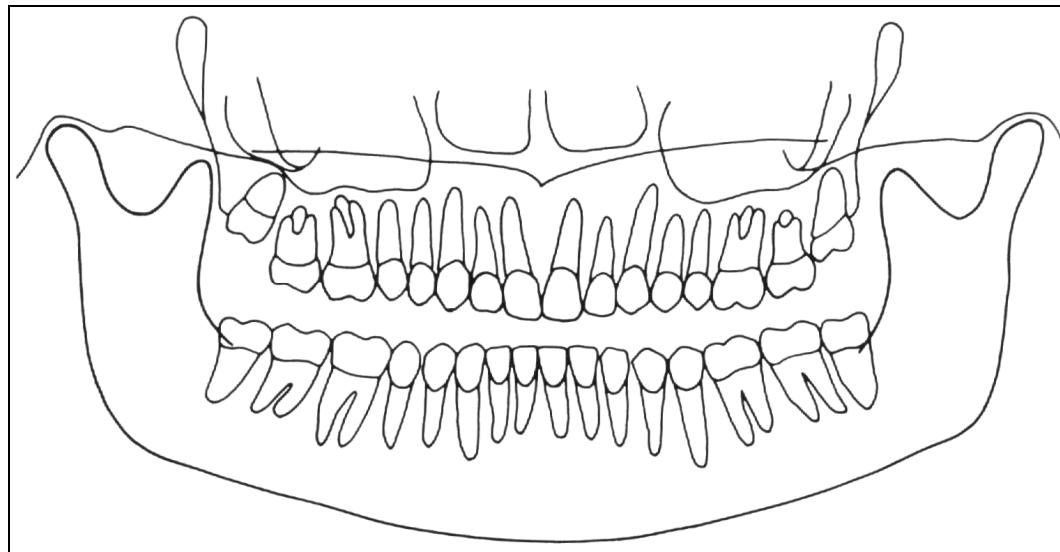



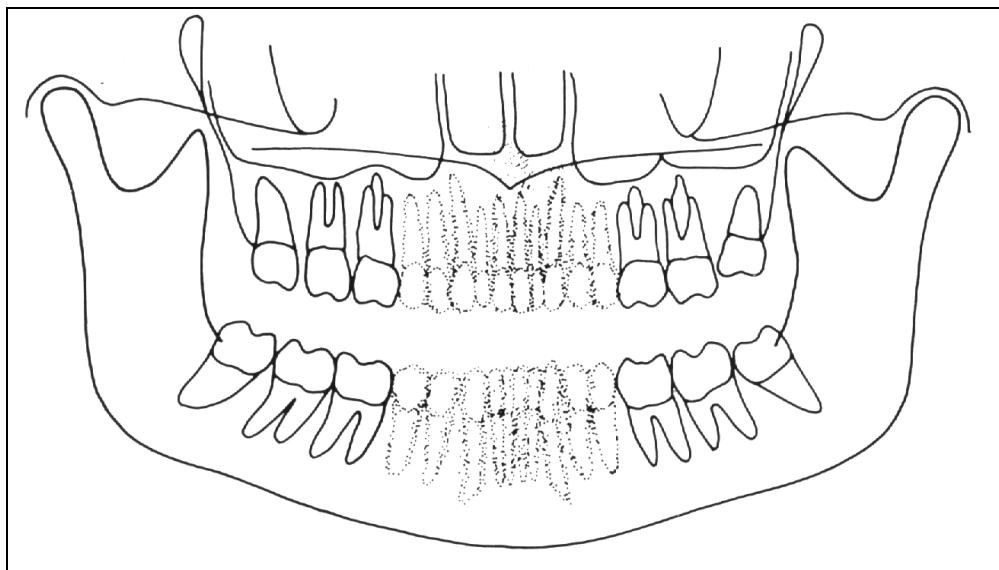
Figure 34

5. The patient must extend his spine; this is normally obtained by asking the patient to step forward, making sure that all other conditions are unchanged. If not properly extended, the spine will cause the appearing of a lower exposed area (clearer) in the front part of the image.

6. The patient's tongue must be positioned against his palate. Otherwise, the air between the tongue and the palate forms an area of lower absorption, which leads to a darker area that hides the apex of the teeth of the maxilla.

The result of all the above listed actions will be an image where all the parts are properly exposed and well identifiable as in the diagram of Figure 35.

Figure 35


It must be noted that the image is quite symmetrical, with the ascending rami of the temporo mandibular joints almost parallel. The occlusal plane is shown slightly tilted upward, the palatal plane does not overlap the apex of the upper arch and therefore allows a good view of the apex itself.

8.17.1.1 Errors due to poor positioning of patient

- The image shows the anterior teeth with reduced magnification and not well defined. The cervical spine is shown as evident white shadow.**

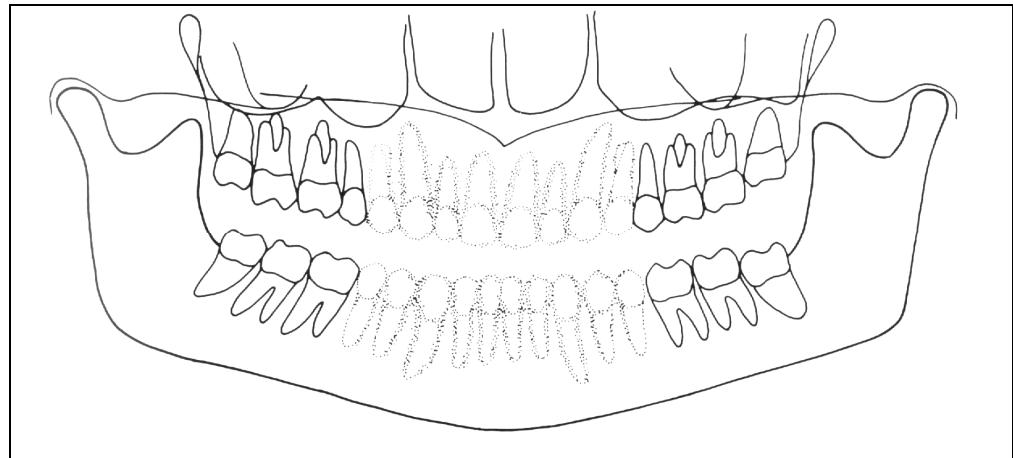
In addition, on the molar zone there are too many shadows, disturbing the reading.

The resulting image is similar to the schema shown on Figure 36.

Figure 36

Possible causes:

The patient is positioned too forward.


Solution:

Check the patient's positioning by using luminous beams.

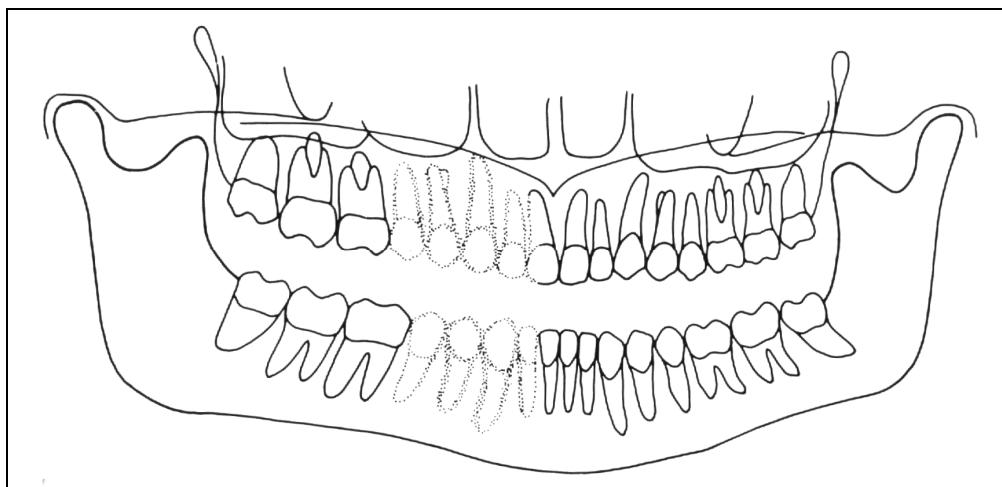
If, after the correct positioning of the patient, the problem still remains, check the alignment of the centring laser lights, simply switching on the centring lights and checking their position. The sagittal medial luminous beam must hit the centre of the chin support.

- **Anterior teeth are enlarged and blurred**

Figure 37 shows the result of this error.

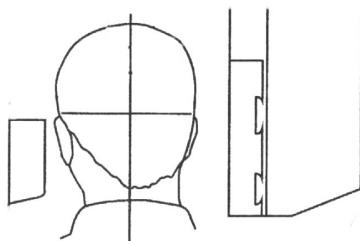
Figure 37

Possible causes:


The patient is positioned too back.

Solution:

Check the patient's positioning by using luminous beams.

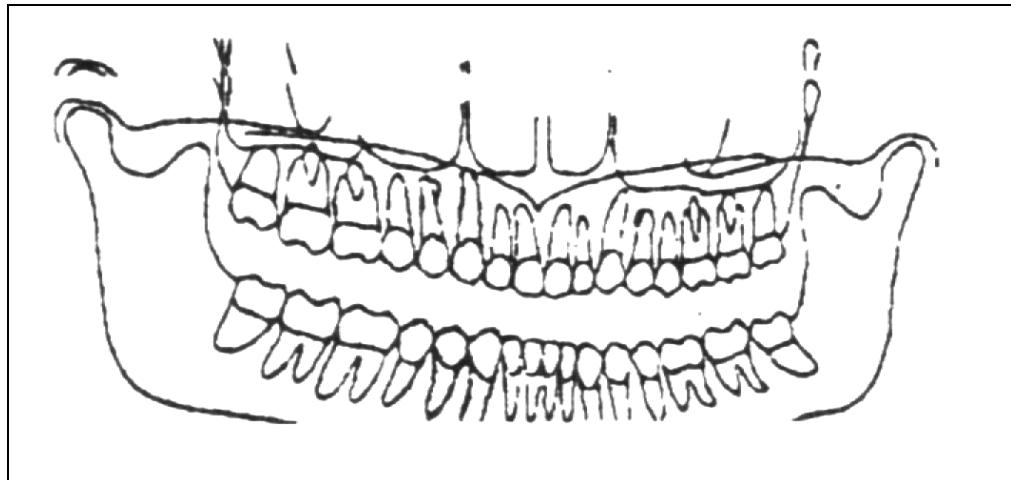

- **Part of the image is enlarged while the other is reduced**

The diagram in Figure 38 represents the image obtained; it is possible to observe that one part of the radiography is blurred and enlarged, while the other is reduced and seems to be in focus; the two condylar rami are at the same height on the image.

Figure 38

Possible cause:

This effect can be due to two different causes.
In the first one, the sagittal medial plane is not aligned with the relevant centring light beam, which falls at the centre of the chin support.
In the second case, the centre of the sagittal medial plane corresponds with the centre of the chin support, but the patient's head is rotated.


In both cases, one side is closer to the sensor plane than the other, thus resulting in a different magnification of the two sides; the part more distant from the sensor will be more magnified while the part closer to the sensor plane will result smaller. The result will be an image as shown in Figure 38; the left-hand area of the image shows a bigger magnification that can be noticed both on the teeth and on the ascending rami of the TMJ.

Solution:

Check the positioning of the sagittal medial plane by using the relevant centring light beam.
Check also the position of the sagittal medial beam; lighted, it must fall both on the centre of the chin support and also on the centre of the bite.

- **The image shows the upper vertex of the condylar rami of different heights;**

Figure 39 shows the result of this error.

Figure 39

Possible causes:

The sagittal medial plane is not vertical. This can be the patient's problem, but if the defect is always present, check the laser beam.

Solution:

Verify that the laser beam is vertical; this check can be performed very quickly by using the laser beam and verifying that it falls on the centre of the chin support; remove the chin support itself and check that the beam falls in the centre of the two holes used to fix the support itself.

If not, a possible cause can be the imperfect horizontalness of the chin support arm, that must be adjusted using the relevant screws.

- **The image shows undulated teeth rows**

As can be seen in Figure 40, the upper teeth are magnified and unfocused, with the shadow of the hard palate positioned over the superior apex. The temporo-mandibular joints are exposed outward, with lines divergent upward. In some cases, the condylar vertices might not appear on the image.

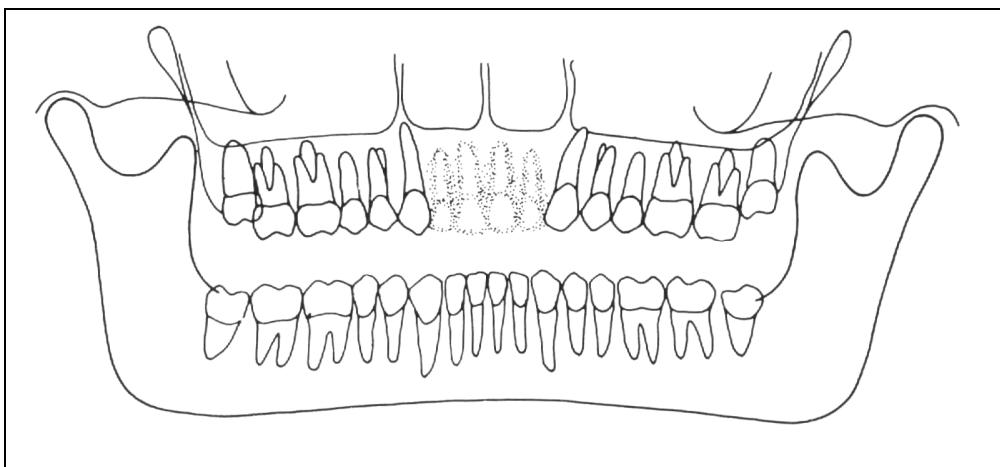
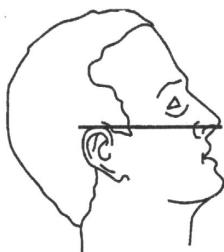
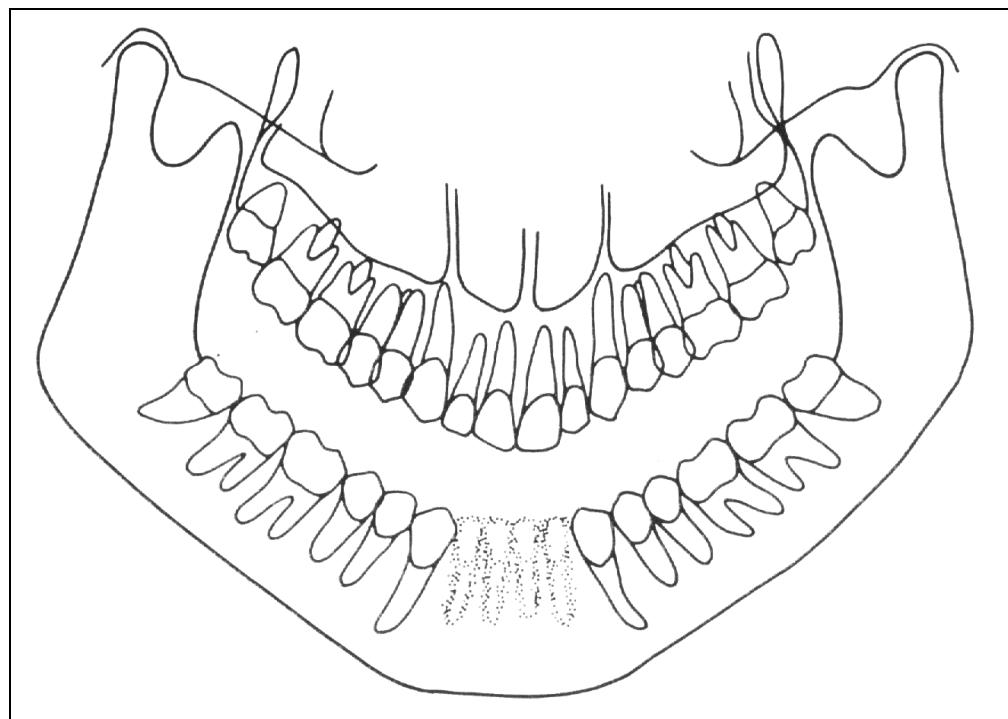
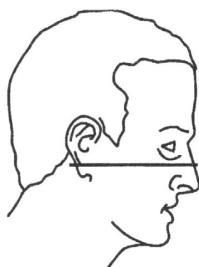



Figure 40


Possible causes:


A Frankfurt plane too tilted upward produces different anomalies that may also appear simultaneously. A chin support plane too high during the patient positioning, or when extending the spine, may generate this mistake. In this condition, the rear side of the patient's head may also interfere with the rotating arm of the panoramic equipment.

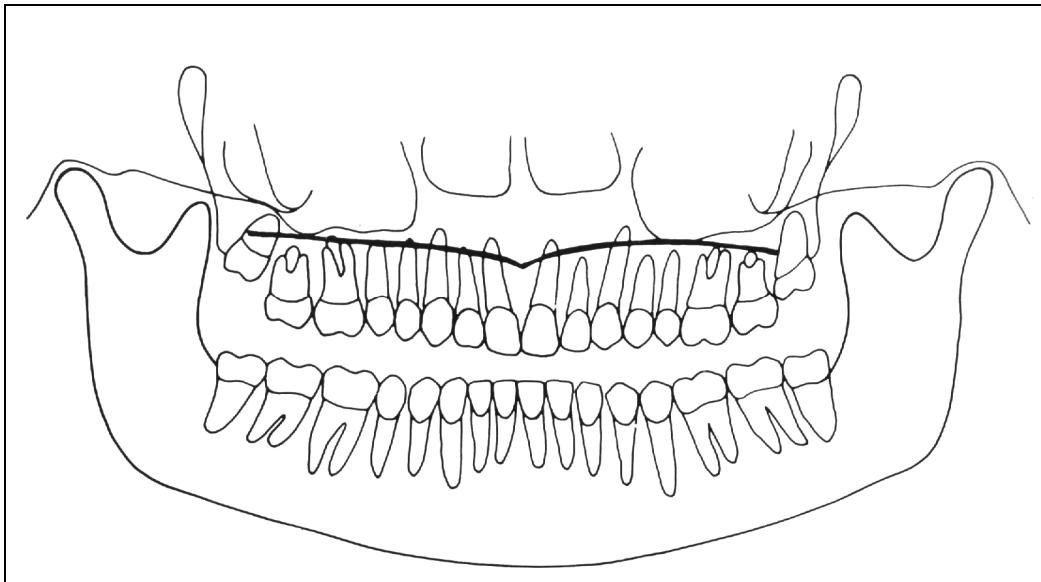
- **The radiographic image shows the teeth row too curved upward with the lower incisor not focused**

Figure 41 shows the result of this type of error. The temporo-mandibular joints are shown very high up, with lines converging towards the top. In some cases the upper condyle might not be visible in the image.

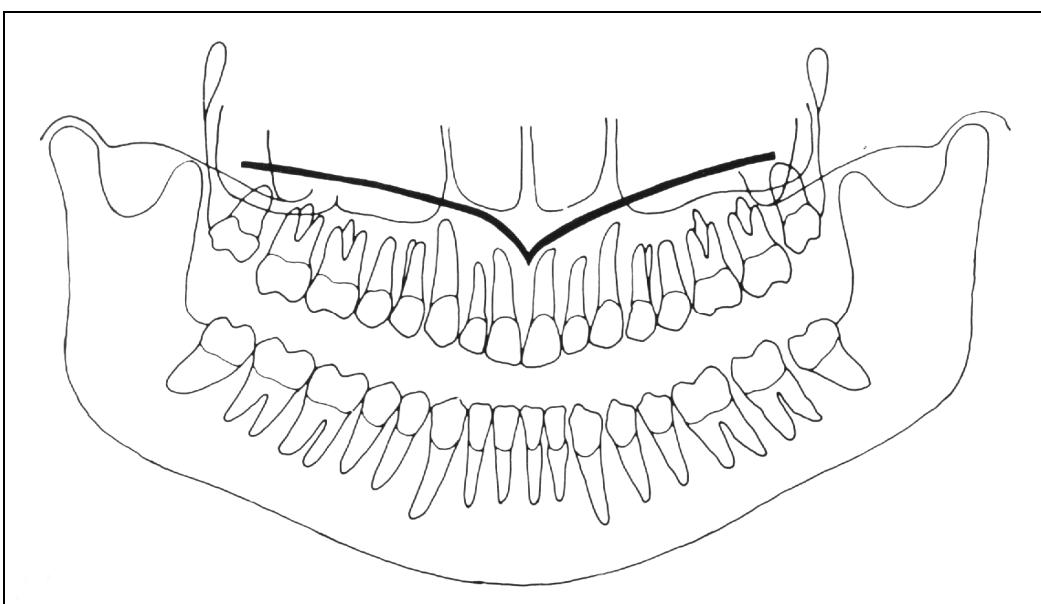
Figure 41

Possible causes:

Patient's head tilted downward, as on the diagram alongside.


Solution:

Check the positioning of the patient by aligning the Frankfurt plane with the corresponding light beam.


NOTE:

In some cases, the positioning of the Frankfurt plane too tilted downward produces a correct image of the lower incisors, but the projection of the palate falls on the lower teeth apex, as shown in Figure 42.

Figure 42

In this case, a light tilting forward and downward of the Frankfurt plane causes the palate to be projected over and too far from the root of the teeth of the maxilla arch, without distortion of the incisor teeth, as in Figure 43.

Figure 43

8.17.1.2 Images with artefacts

- **Radiographs that show images with soft tissues or artefacts**

The radiographs may show anatomical parts of the soft tissues or show radiographic artefacts.

Normally the soft tissues might be more or less present, depending on the patient positioning, while the presence of artefacts is strictly dependent on the presence of foreign objects on the trajectory of the X-ray beam.

The next figure shows these cases; please consider that all structures have a bilateral duplicate.

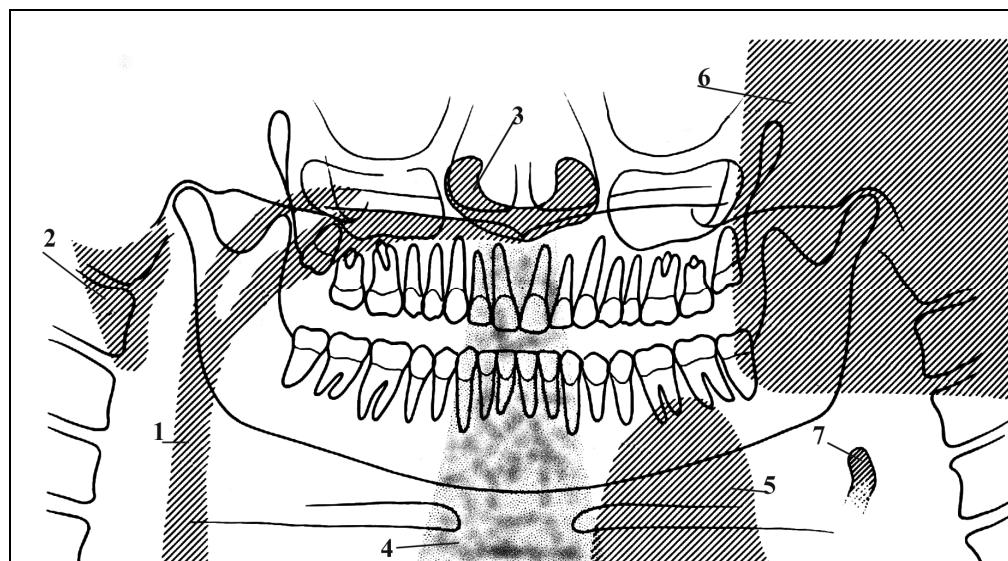


Figure 44

Soft tissue	Description	Artefacts	Description
2	Ear soft tissue	1	Space between tongue and palate. All the structures of the oropharynx cavity can be shown
3	Nose soft tissue	4	Spinal column
7	Epiglottis	5	Image of the patient's leaded protective apron (light area)

The part identified with "6" in Figure 44 represents the image of the contro-lateral mandible (the other side of the mandible). That therefore results as a clearer area overlapped with the real image. Very often the resulting darker area in the bottom corner is noticed and is considered as an artefact of the radiological image.

This is not true, because it is derived from the projection geometry used to obtain the panoramic image. The effect can be more evident if the image is underexposed due to wrong radiological parameters.

With reference to Figure 44 above, let's analyse some errors.

- **Wrong positioning of the spine**

In the event the image shows an over-bright and unfocused part in the central area (see point "4" - Figure 44), this is probably caused by the wrong position of the spine that has not been properly extended by the patient. In this case, the spine absorbs an excessive quantity of radiation that therefore causes the image to be over-bright. This excessive brightness can be seen above all in the lower part, but is less visible in the upper part of the image.

Solution:

Ask the patient to step forward, thus extending his spine, in order to reduce X-ray absorption.

- **Shadows or bright artefacts**

The most common cause for the presence of these artefacts is the presence of metal objects worn by the patient (earrings, necklaces, etc.).

The necklaces worn by the patient normally result in a radio-opaque arch positioned in the chin area. This arch normally overlaps the chin itself and the shadow of the spine, disturbing the diagnosis of possible problems in the chin area and in the area of the apices of the mandibular incisors.

The earrings, on the other hand, create real images in the proper position and shadow images projected in the contro-lateral area, thus hiding possible problems or generating bright areas within the paranasal sinuses.

In some cases, that may depend either on the trajectory of the panoramic machine or on the position of the metal objects, they can generate up to three images (one real and two shadows), thus further disturbing the correct diagnosis.

This situation may occur especially if the patient has large protheses or metal fillings, and is associated with a positioning error, that projects the shadow of the metal part on wide areas of the image.

- **Non-exposed area in the lower-central part of the image**

If the problem appears as shown in point "5" of Figure 44 above, it indicates that there has been interference between the leaded apron worn by the patient and the X-ray beam.

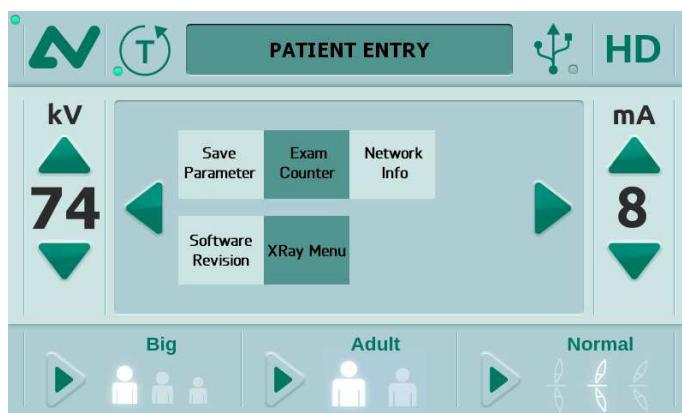
Solution:

Properly position the leaded apron (tight around the patient's shoulders and neck) then carry out a new examination.

- **The teeth rows are overexposed**

As already described, if the tongue is not positioned against the palate during the exposure, it will create an air chamber between the tongue and the palate; this air gap creates a less absorbing area that overlaps the teeth, often in the apex area. This area is identified as reference "1" in Figure 44.

Solution:


Ask the patient to position his tongue against the palate during the exposure.

8.18 Storing of automatic exposure parameters

The pre-set technical exposure factors can be varied according to the needs of the user, or the aim for somewhat contrasted images.

To modify the automatic exposure parameters, please follow the indicated procedure:

1. Select the examination, the type of patient and the size to be modified.
2. Press any of the increase (3) or decrease (4) arrows to modify the kV and/or mA parameters to suit your needs; the values change their color from black to green.
3. Press the key "Service Menu" (18) ; the following image will be displayed:

4. Press the "Save Parameter" key to store the modified parameters for the examination and type and size of patient you have selected.
5. After pressing the key, the display will show the following message:

**" SAVE THE NEW PARAMETERS?
Y=PRESS >0<; N=PRESS T "**

Press the "Patient Entrance" (6) key to confirm or the "Test" (5) key to cancel the setting.

Pressing key (18) the unit will return to standard mode.

8.18.1 Table of pre-set anatomic parameters

PANORAMIC

	Adult	Child
	76 kV 9 mA	66 kV 8 mA
	80 kV 9 mA	68 kV 8 mA
	82 kV 9 mA	70 kV 8 mA

TMJ open/close mouth

	Adult	Child
	70 kV 8 mA	62 kV 8 mA
	74 kV 8 mA	66 kV 8 mA
	78 kV 8 mA	70 kV 8 mA

SINUS

	Adult	Child
	68 kV 8 mA	64 kV 8 mA
	72 kV 8 mA	66 kV 8 mA
	74 kV 8 mA	68 kV 8 mA

3D Dentition - HD mode

	Adult	Child
	78 kV 8 mA	64 kV 9 mA
	80 kV 8 mA	66 kV 9 mA
	82 kV 8 mA	68 kV 9 mA

3D Dentition - XD mode

	Adult	Child
	82 kV 9 mA	64 kV 10 mA
	84 kV 10 mA	66 kV 10 mA
	86 kV 10 mA	68 kV 10 mA

3D TMJ Left / 3D TMJ Right

		Adult	Child
Small		80 kV 8 mA	64 kV 9 mA
Medium		82 kV 9 mA	66 kV 9 mA
Large		84 kV 10 mA	68 kV 9 mA

3D Sinus

		Adult	Child
Small		76 kV 8 mA	64 kV 9 mA
Medium		78 kV 9 mA	66 kV 9 mA
Large		80 kV 10 mA	68 kV 9 mA

CEPHALOMETRY (L.L)

		Adult	Child
Small		70 kV 6 mA	70 kV 6 mA
Medium		74 kV 6 mA	72 kV 6 mA
Large		76 kV 6 mA	74 kV 6 mA

CEPHALOMETRY (A/P - P/A)

		Adult	Child
Small		74 kV 12 mA	72 kV 10 mA
Medium		76 kV 12 mA	74 kV 10 mA
Large		80 kV 10 mA	76 kV 10 mA

9. MAINTENANCE

This unit, like all other electrical appliances, must be used correctly and also serviced and controlled at regular intervals. This precaution ensures a safe and efficient performance.

The periodical maintenance consists in checks performed by the operator himself and/or by a qualified Technician.

The operator can control the following items:

- check that the plates are complete and well fixed
- check possible oil leaks from the tube-head
- check that the X-ray button cable does not show breaking or wearing signs
- check that the unit is not damaged externally as to compromise the safety of protection from radiation.

WARNING:

It is recommended that the operator performs the checks before each sessions.

In the event the operator detects faults or abnormalities, he must immediately call the Technical Service.

MAINTENANCE LOGBOOK

Installation: Date Technician

Maintenance: Date Technician

Cause

VILLA
SISTEMI
MEDICALI

Cod. 6907914103_Rev.2

CE 0051

6907914103

VILLA SISTEMI MEDICALI S.p.a.

Via Delle Azalee, 3
20090 Buccinasco (MI) - ITALY
Tel. (+39) 02 48859.1
Fax (+39) 02 4881844